Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Mar 1;26(5):1345–1351. doi: 10.1093/nar/26.5.1345

Crystal structures of MS2 coat protein mutants in complex with wild-type RNA operator fragments.

S H van den Worm 1, N J Stonehouse 1, K Valegârd 1, J B Murray 1, C Walton 1, K Fridborg 1, P G Stockley 1, L Liljas 1
PMCID: PMC147404  PMID: 9469847

Abstract

In MS2 assembly of phage particles results from an interaction between a coat protein dimer and a stem-loop of the RNA genome (the operator hairpin). Amino acid residues Thr45, which is universally conserved among the small RNA phages, and Thr59 are part of the specific RNA binding pocket and interact directly with the RNA; the former through a hydrogen bond, the latter through hydrophobic contacts. The crystal structures of MS2 protein capsids formed by mutants Thr45Ala and Thr59Ser, both with and without the 19 nt wild-type operator hairpin bound, are reported here. The RNA hairpin binds to these mutants in a similar way to its binding to wild-type protein. In a companion paper both mutants are shown to be deficient in RNA binding in an in vivo assay, but in vitro the equilibrium dissociation constant is significantly higher than wild-type for the Thr45Ala mutant. The change in binding affinity of the Thr45Ala mutant is probably a direct consequence of removal of direct hydrogen bonds between the protein and the RNA. The properties of the Thr59Ser mutant are more difficult to explain, but are consistent with a loss of non-polar contact.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borer P. N., Lin Y., Wang S., Roggenbuck M. W., Gott J. M., Uhlenbeck O. C., Pelczer I. Proton NMR and structural features of a 24-nucleotide RNA hairpin. Biochemistry. 1995 May 16;34(19):6488–6503. doi: 10.1021/bi00019a030. [DOI] [PubMed] [Google Scholar]
  2. Cavarelli J., Moras D. Recognition of tRNAs by aminoacyl-tRNA synthetases. FASEB J. 1993 Jan;7(1):79–86. doi: 10.1096/fasebj.7.1.8422978. [DOI] [PubMed] [Google Scholar]
  3. Golmohammadi R., Valegård K., Fridborg K., Liljas L. The refined structure of bacteriophage MS2 at 2.8 A resolution. J Mol Biol. 1993 Dec 5;234(3):620–639. doi: 10.1006/jmbi.1993.1616. [DOI] [PubMed] [Google Scholar]
  4. Holbrook S. R., Sussman J. L., Warrant R. W., Kim S. H. Crystal structure of yeast phenylalanine transfer RNA. II. Structural features and functional implications. J Mol Biol. 1978 Aug 25;123(4):631–660. doi: 10.1016/0022-2836(78)90210-3. [DOI] [PubMed] [Google Scholar]
  5. Jessen T. H., Oubridge C., Teo C. H., Pritchard C., Nagai K. Identification of molecular contacts between the U1 A small nuclear ribonucleoprotein and U1 RNA. EMBO J. 1991 Nov;10(11):3447–3456. doi: 10.1002/j.1460-2075.1991.tb04909.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  7. Lago H., Fonseca S. A., Murray J. B., Stonehouse N. J., Stockley P. G. Dissecting the key recognition features of the MS2 bacteriophage translational repression complex. Nucleic Acids Res. 1998 Mar 1;26(5):1337–1344. doi: 10.1093/nar/26.5.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LeCuyer K. A., Behlen L. S., Uhlenbeck O. C. Mutagenesis of a stacking contact in the MS2 coat protein-RNA complex. EMBO J. 1996 Dec 16;15(24):6847–6853. [PMC free article] [PubMed] [Google Scholar]
  9. Lim F., Peabody D. S. Mutations that increase the affinity of a translational repressor for RNA. Nucleic Acids Res. 1994 Sep 11;22(18):3748–3752. doi: 10.1093/nar/22.18.3748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mastico R. A., Talbot S. J., Stockley P. G. Multiple presentation of foreign peptides on the surface of an RNA-free spherical bacteriophage capsid. J Gen Virol. 1993 Apr;74(Pt 4):541–548. doi: 10.1099/0022-1317-74-4-541. [DOI] [PubMed] [Google Scholar]
  11. Murray J. B., Collier A. K., Arnold J. R. A general purification procedure for chemically synthesized oligoribonucleotides. Anal Biochem. 1994 Apr;218(1):177–184. doi: 10.1006/abio.1994.1157. [DOI] [PubMed] [Google Scholar]
  12. Nagai K. RNA-protein complexes. Curr Opin Struct Biol. 1996 Feb;6(1):53–61. doi: 10.1016/s0959-440x(96)80095-9. [DOI] [PubMed] [Google Scholar]
  13. Oubridge C., Ito N., Evans P. R., Teo C. H., Nagai K. Crystal structure at 1.92 A resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature. 1994 Dec 1;372(6505):432–438. doi: 10.1038/372432a0. [DOI] [PubMed] [Google Scholar]
  14. Peabody D. S., Lim F. Complementation of RNA binding site mutations in MS2 coat protein heterodimers. Nucleic Acids Res. 1996 Jun 15;24(12):2352–2359. doi: 10.1093/nar/24.12.2352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Peabody D. S. The RNA binding site of bacteriophage MS2 coat protein. EMBO J. 1993 Feb;12(2):595–600. doi: 10.1002/j.1460-2075.1993.tb05691.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Spingola M., Peabody D. S. MS2 coat protein mutants which bind Qbeta RNA. Nucleic Acids Res. 1997 Jul 15;25(14):2808–2815. doi: 10.1093/nar/25.14.2808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Stockley P. G., Stonehouse N. J., Walton C., Walters D. A., Medina G., Macedo J. M., Hill H. R., Goodman S. T., Talbot S. J., Tewary H. K. Molecular mechanism of RNA-phage morphogenesis. Biochem Soc Trans. 1993 Aug;21(3):627–633. doi: 10.1042/bst0210627. [DOI] [PubMed] [Google Scholar]
  18. Stonehouse N. J., Stockley P. G. Effects of amino acid substitution on the thermal stability of MS2 capsids lacking genomic RNA. FEBS Lett. 1993 Nov 22;334(3):355–359. doi: 10.1016/0014-5793(93)80711-3. [DOI] [PubMed] [Google Scholar]
  19. Tars K., Bundule M., Fridborg K., Liljas L. The crystal structure of bacteriophage GA and a comparison of bacteriophages belonging to the major groups of Escherichia coli leviviruses. J Mol Biol. 1997 Sep 5;271(5):759–773. doi: 10.1006/jmbi.1997.1214. [DOI] [PubMed] [Google Scholar]
  20. Valegârd K., Murray J. B., Stonehouse N. J., van den Worm S., Stockley P. G., Liljas L. The three-dimensional structures of two complexes between recombinant MS2 capsids and RNA operator fragments reveal sequence-specific protein-RNA interactions. J Mol Biol. 1997 Aug 1;270(5):724–738. doi: 10.1006/jmbi.1997.1144. [DOI] [PubMed] [Google Scholar]
  21. Valegård K., Liljas L., Fridborg K., Unge T. The three-dimensional structure of the bacterial virus MS2. Nature. 1990 May 3;345(6270):36–41. doi: 10.1038/345036a0. [DOI] [PubMed] [Google Scholar]
  22. Valegård K., Murray J. B., Stockley P. G., Stonehouse N. J., Liljas L. Crystal structure of an RNA bacteriophage coat protein-operator complex. Nature. 1994 Oct 13;371(6498):623–626. doi: 10.1038/371623a0. [DOI] [PubMed] [Google Scholar]
  23. Valegård K., Unge T., Montelius I., Strandberg B., Fiers W. Purification, crystallization and preliminary X-ray data of the bacteriophage MS2. J Mol Biol. 1986 Aug 20;190(4):587–591. doi: 10.1016/0022-2836(86)90244-5. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES