Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 2006 Apr 25;78(6):1011–1025. doi: 10.1086/504300

Reconstruction of a Functional Human Gene Network, with an Application for Prioritizing Positional Candidate Genes

Lude Franke 1, Harm van Bakel 1, Like Fokkens 1, Edwin D de Jong 2, Michael Egmont-Petersen 3, Cisca Wijmenga 1
PMCID: PMC1474084  PMID: 16685651

Abstract

Most common genetic disorders have a complex inheritance and may result from variants in many genes, each contributing only weak effects to the disease. Pinpointing these disease genes within the myriad of susceptibility loci identified in linkage studies is difficult because these loci may contain hundreds of genes. However, in any disorder, most of the disease genes will be involved in only a few different molecular pathways. If we know something about the relationships between the genes, we can assess whether some genes (which may reside in different loci) functionally interact with each other, indicating a joint basis for the disease etiology. There are various repositories of information on pathway relationships. To consolidate this information, we developed a functional human gene network that integrates information on genes and the functional relationships between genes, based on data from the Kyoto Encyclopedia of Genes and Genomes, the Biomolecular Interaction Network Database, Reactome, the Human Protein Reference Database, the Gene Ontology database, predicted protein-protein interactions, human yeast two-hybrid interactions, and microarray coexpressions. We applied this network to interrelate positional candidate genes from different disease loci and then tested 96 heritable disorders for which the Online Mendelian Inheritance in Man database reported at least three disease genes. Artificial susceptibility loci, each containing 100 genes, were constructed around each disease gene, and we used the network to rank these genes on the basis of their functional interactions. By following up the top five genes per artificial locus, we were able to detect at least one known disease gene in 54% of the loci studied, representing a 2.8-fold increase over random selection. This suggests that our method can significantly reduce the cost and effort of pinpointing true disease genes in analyses of disorders for which numerous loci have been reported but for which most of the genes are unknown.


The completion of various genome-sequencing projects and large-scale genomic studies has led to a wealth of available biological data. It is anticipated that this information will revolutionize our insight into the molecular basis of most common diseases by making it easier and quicker to identify genes with variants that predispose to disease (i.e., disease genes). At the moment, we are faced with many disease susceptibility loci, resulting from linkage or cytogenetic analyses, that cover extensive genomic regions. Usually, when the genes in these loci are assessed, positional candidate genes become apparent that can be linked to the phenotype being studied on the basis of their biological function.

However, the most obvious functional candidate gene from a disease locus does not always prove to be involved in the disease.e.g.,15 Often, genes that would not have been predicted to be disease causing prove to be the true disease gene—for example, the BRCA1 gene in early-onset breast cancer.6 Moreover, although these disease genes might have been assigned biological functions, it is not always evident how these functions relate to disease. Finally, genes with unknown functions are often overlooked, as attention is paid only to well-studied genes for which functions and interactions have been identified or implicated, some of which can be related to the disease pathogenesis. For example, in Fanconi anemia, at least 10 disease genes were identified,7 but only a few had a known function. However, follow-up research810 revealed that five of those genes function in the same protein complex. Another example is limb-girdle muscular dystrophy, in which many of the disease genes encode for proteins that are part of the dystrophin complex.11 This emphasizes the importance of taking an unbiased approach to assessing positional candidate genes.

Faced with the absence of complete functional information for the majority of genes in susceptibility loci, it is difficult to prioritize the positional candidate genes correctly for further sequence or association analysis. However, high-throughput genomic work has now yielded relatively unbiased genomewide data sets1215 that comprise known metabolic, regulatory, functional, and physical interactions. There is, however, little integration of these diverse data sets into a coherent view of possible gene and protein interactions that can be used to investigate relationships between genes in different genetic loci. We have tried to address this problem by developing a functional human gene network that comprises known interactions derived from the Biomolecular Interaction Network Database (BIND),12 the Human Protein Reference Database (HPRD),13 Reactome,15 and the Kyoto Encyclopedia of Genes and Genomes (KEGG).14

Since these data sets contain a limited number of known interactions, we implemented a Bayesian framework to complement these relationships with a large number of predicted interactions by relying on evidence for putative gene relationships based on biological process and molecular function annotations from the Gene Ontology database (GO).16 We further incorporated experimental data—namely, coexpression data derived from ∼450 microarray hybridizations from the Stanford Microarray Database (SMD)17 and the NCBI Gene Expression Omnibus (GEO),18 along with human yeast two-hybrid (Y2H) interactions19 and interactions based on orthologous high-throughput protein-protein interactions from lower eukaryotes.20

Our interaction network was then used to test whether we could rank the best positional candidates in susceptibility loci on the basis of their interactions, assuming that the causative genes for any one disorder will be involved in only a few different biological pathways. This would be apparent in our network as a clustering of genes from different susceptibility loci, resulting in shorter gene-gene connections between disease genes than one would expect by chance (fig. 1). Our method (called “Prioritizer”) analyzes susceptibility loci and investigates whether genes from different loci can be linked to each other directly21 or indirectly.22 When we constructed artificial loci of varying size around susceptibility loci from 96 different genetic disorders (each containing at least three loci) and used Prioritizer in our most comprehensive gene network to rank the positional candidate genes for each locus, we were able to significantly increase the chance of detecting disease genes.

Figure 1.

Figure  1

Basic principles of the prioritization method for positional candidate genes with the use of a functional human gene network. The method integrates different gene-gene interaction data sources in a Bayesian way (left panel). Subsequently, this gene network is used to prioritize positional candidate genes, with all genes assigned an initial score of zero. In the example (right panel), three different susceptibility loci are analyzed, each containing a disease gene (P, Q, or R) and two nondisease genes. In each locus, the three positional candidate genes increase the scores of nearby genes in the gene network, by use of a kernel function that models the relationship between gene-gene distance and score effect. Genes within each locus are ranked on the basis of their eventual effect score, corrected for differences in the topology of the network (see the “Material and Methods” section).

Material and Methods

Functional Gene Network Reconstruction

As a basis for the gene network, we used annotations from Ensembl,23 version 32.35, resulting in 20,334 known genes that physically map within the autosomes or chromosome X or Y. This yielded 206,725,611 potential gene-gene interactions.

On the basis of this set of genes, a comprehensive “gold standard” set of validated direct gene-gene relationships (true positives) was determined using both BIND (September 15, 2005) and HRPD (September 15, 2005) to extract human, curated protein-protein interactions, the proteins of which were mapped to Ensembl gene identifiers. In addition, all human pathways from Reactome (September 15, 2005) and KEGG (September 15, 2005) were used to derive direct interactions that were of transcriptional, physical, or metabolic origin, since pathways are usually composed of genes and proteins that interact with each other in various ways. We chose to allow interactions of physical, metabolic, and regulatory origin to be included within our network, because, for instance, mutations in either one of two genes encoding proteins in the same metabolic pathway or protein complex could lead to the same disease phenotype.

Because the true-positive gold standard only describes a limited number of relationships between a limited number of genes, we also used data from GO, coexpression data derived from microarray experiments, conserved protein-protein high-throughput data, and human Y2H interaction data to predict interactions of the remaining gene pairs. We used a Bayesian classifier, because these four types of data were of varying reliability and only contained information about a subset of the data. The classifier allows for combining dissimilar data sets, can deal with missing data, and uses conditional probabilities that can be well interpreted and that control for the varying reliability of the data sets.2429

Training of Bayesian Classifier on Gold Standard

For the prediction of interactions, we used a Bayesian classifier type that assumed all data sets had been binned. This operation was performed for each gene pair, and it determined, for each data set, to which bin the pair belongs. Because the number of bins per data set was limited, each bin contained many gene pairs. Subsequently, for each bin, we determined the likelihood ratio between the proportion of gene pairs known to interact and the proportion of gene pairs known not to interact. This measure indicates whether there is an over- or an underrepresentation of truly interacting gene pairs in the bin, which specifies the conditional probability estimates of the Bayesian classifier; thus, training of the classifier is straightforward.

However, to be able to train the classifier by determining likelihood ratios of sets of gene pairs, it was crucial that the gold standard, containing the aforementioned well-defined set of curated true-positive gene pairs, be complemented with a set of gene pairs for which there is strong evidence that they, or the proteins they encode, do not functionally interact (true negatives). As has been discussed by others,30 the construction of this true-negative reference set is problematic, because it is impossible to be certain that two genes (i.e., their protein products) do not interact. However, by assuming that genes encoding for proteins localized within different cellular compartments are, in general, unrelated, it is possible to make a list of gene pairs that are unlikely to interact. The GO Cellular Component annotations were used to yield groups of gene pairs that have exclusive cellular component annotations. To overcome a strong selection bias in the classifier toward well-annotated genes (details provided in appendix A [online only]), only the 5,105 genes that were part of a true-positive gene pair at least three times were allowed to form true-negative gene pairs. We chose combinations of cellular organelles that were highly underrepresented (χ2=2,490; P<10-10) within the true-positive set, which resulted in gene pairs for the following combinations: nucleus and extracellular matrix, protein complex and Golgi apparatus, protein complex and Golgi stack, non–membrane-bound organelle and Golgi stack, non–membrane-bound organelle and extracellular space, non–membrane-bound organelle and Golgi apparatus, extracellular region and organelle membrane, mitochondrion and extracellular matrix, extracellular space and organelle membrane, extracellular space and Golgi stack, organelle membrane and extracellular matrix, extracellular matrix and Golgi stack, extracellular matrix and ubiquitin ligase complex, and ubiquitin ligase complex and Golgi stack.

Preprocessing and Binning of Data Sets

To allow for Bayesian integration, the GO data, microarray coexpression data, and orthologous and human protein-protein interactions data were preprocessed and binned. Biological Process and Molecular Function GO annotations were derived from Ensembl, and two measures of relatedness for each of the two data sets were determined, resulting in a total of four different GO measures of relatedness. First, we determined, for each Biological Process GO term, how many of the genes had been assigned this term. Then, we determined which Biological Process GO terms were shared between the two components of each gene pair, for all the pairs. This led to the shared GO term that was annotated in the least number of genes, and its frequency of occurrence was used as a measure. GO terms GO:0000004 (biological process unknown) and GO:0005554 (molecular function unknown) were discarded, since genes that shared either of these highly unspecific terms should not be related to each other on the basis of this information. The same procedure was performed to generate the first measure of Molecular Function GO relatedness.

The second measure determined the maximal hierarchical depth at which a gene pair shared a Biological Process GO term. This hierarchical depth was defined as the shortest number of branches necessary to go from one Biological Process GO term back to the GO root. The same method was used to generate the maximum hierarchical depth of the Molecular Function GO sharing measure.

Coexpression between genes was determined in microarray data sets from GEO and SMD. Individual data sets comprised an experiment that contained at least 10 hybridizations. To ensure that the quality of the intensity measurements was reliable, various filtering steps were performed to exclude spots with low signal-to-noise ratios.31 Within the SMD data sets, intensity spots were filtered out that were either missing or contaminated, and the mean intensity of spots had to be at least 2.5 times higher than the average background signal of the microarray. Since GEO contains both ratiometric and Affymetrix single-spot intensity microarray data sets, we used different filtering strategies. The 5% of genes with the lowest maximal intensity were removed from the Affymetrix data sets. For both SMD and GEO, expression ratios were log2 transformed. Microarray features missing ⩾25% of expression measurements in a data set after filtering were excluded. All features were assigned Ensembl gene identifiers by comparing their sequences to Ensembl transcripts with the use of SSAHA.32

To determine which gene pairs showed coexpression, the mutual information was calculated between all the genes represented within each data set33 if there were at least 10 nonmissing data points. As a preprocessing step, expression levels were ranked; this invertible reparameterization did not affect the mutual information. Next, for each pair of genes, the joint distribution of expression levels was estimated by calculating a histogram with overlapping windows. The range was divided into six windows, where each window extends to the center of the next window. The number of windows was chosen by optimizing the error rate for the mutual information derived from analytical probability densities.33 In this way, each data point contributes to two windows, except at the extremities. Finally, on the basis of the resulting distribution, the mutual information (MI) between each pair of genes was calculated as MI(A,B)=H(A)+H(B)-H(A,B), where H(X) is the information-theoretic Shannon entropy.34 For each microarray data set, the MI score was binned. This allowed the subsequent Bayesian classifier to determine the likelihood ratio, indicating whether gene pairs within each bin contained an overrepresentation of truly interacting gene pairs. Once the likelihood ratios had been determined for each data set, a receiver operator characteristic (ROC) curve was constructed, and the area under the curve (AUC) was calculated. Data sets that had a minimal AUC of 0.59 were combined in a naive way—for each gene pair, the likelihood ratios were multiplied by each other, resulting in a final microarray coexpression likelihood ratio for each gene pair.

Two orthologous protein-protein interaction data sets from Lehner and Fraser20 were used to supplement the GO and microarray coexpression data. One data set contained computationally predicted human protein interactions that had been physically mapped within Ensembl genes. The second data set contained a subset of these protein pairs, to which Lehner et al. had assigned a higher confidence. Three bins were constructed: one containing the higher-confidence gene pairs, one containing the remaining lower-confidence pairs, and a third containing all the other unobserved gene pairs.

A human Y2H protein-protein interaction data set from Stelzl et al.19 was integrated by mapping the HUGO identifiers to Ensembl genes. Two bins were constructed: one containing the gene pairs for which a Y2H interaction was reported, and one containing all the other unobserved gene pairs.

Network Integration

The Bayesian classifier was employed to integrate the various binned types of data. We chose not to learn the Bayesian network structure from the data but to use a predefined Bayesian network structure, for which the conditional probabilities were determined by benchmarking the various data sets against the gold standard (fig. 2) (details provided in appendix A). We subsequently generated four gene networks. One network contained evidence for interaction based on the GO data (GO network). Another network contained evidence for interaction derived from integrating the microarray coexpression and predicted protein-protein interaction data in a naive way (MA+PPI network). A third network combined, in a naive way, the GO and MA+PPI networks (GO+MA+PPI network), and this was complemented with all known true-positive interactions in a final network (GO+MA+PPI+TP network). To relate interacting genes directly or indirectly, an all-pairs shortest path was calculated for each gene network.35 This measure of the minimal path length between pairs of genes was used in the subsequent method to associate disease genes with each other.

Figure 2.

Figure  2

Integration of data sets in four gene networks. a, Data sets were benchmarked against a set of 55,606 known true-positive gene pairs derived from BIND, KEGG, HPRD, and Reactome and 800,608 true-negative gene pairs derived from GO. The Venn diagram indicates the data sources from which the true positives were derived and their degree of overlap. Numbers in parentheses indicate the number of interactions that are provided by each of the data sets. b, Potential gene-gene interactions derived from GO, microarray coexpression data, and human and orthologous protein-protein interaction data were integrated using a Bayesian classifier. The steps involved in building this classifier are shown.

Disease Analysis and Positional Candidate-Gene Prioritization

Prioritizer assesses whether genes residing within different susceptibility loci are close together within the gene network. This indicates that this method could also work with diseases for which only two loci have been identified. However, in such a case, there is a considerable probability that two genes, each residing in a different locus, would interact by chance. We therefore restricted the analysis to diseases for which at least three contributing disease genes had been identified. These diseases and disease genes were derived from the Online Mendelian Inheritance in Man (OMIM) database,36 by text mining the first paragraphs of all OMIM disease entries as of March 1, 2005, and extracting the OMIM gene numbers contained within these paragraphs (table A1 in appendix A). The HUGO gene name was later extracted from these OMIM entries and was mapped to an Ensembl gene name. If, for any one disease, there were two disease genes situated at the same chromosome and positionally <200 genes apart, one of the two genes was randomly removed to ensure that no loci would overlap.

The diseases for which at least three disease genes remained after filtering were analyzed by artificially generating susceptibility loci around the disease genes, in a range from 50 to 150 genes, in steps of 50. All 20,334 genes were assigned an initial effect score of zero, and, subsequently, all loci were traversed. Using each gene network for all positional candidate genes residing in a particular locus, we determined whether any of these genes were functionally closely related to genes physically residing inside another susceptibility locus. If this was the case, the effect score of the related gene that was functionally close but physically in another locus increased (fig. 1), by use of the following Gaussian kernel scoring function:

graphic file with name AJHGv78p1011df1.jpg

where “distance” is defined as the all-pairs shortest path between the two genes. The kernel function width was chosen arbitrarily, but a sensitivity analysis showed that different widths did not influence the results much (data not shown). By applying this function, positional candidate genes that resided in different loci but that were functionally closely related in the gene network were assigned higher scores than positional candidate genes that were functionally far apart from each other. To correct for differences in topology of the gene network, an empiric P value was determined for each positional candidate gene through permutation of the other loci 500 times by reshuffling them across the genome and recalculating the effect scores. This permitted a probability density function to be determined per positional candidate gene, for which the empiric P value could be looked up. For each locus, the positional candidate genes were prioritized on the basis of this P value.

Results

Construction of a Functional Gene Network

The basis for our human gene network was a gold standard of validated gene-gene interactions (true positives) and a further set of gene-gene pairs that were deemed highly unlikely to interact (true negatives). To construct the set of true-positive gene pairs, 2,788 confirmed, direct, physical protein-protein interactions were derived from BIND; 18,176 confirmed human protein interactions were derived from HPRD; 22,012 direct functional interactions were derived from KEGG; and 16,295 interactions were derived from Reactome. This resulted in 55,606 unique true-positive gene relationships (fig. 2a). For the true-negative set, gene pairs were selected that encode for proteins localized in different cellular compartments. The combinations of cellular compartments were selected from their underrepresentation in the set of true positives (see the “Material and Methods” section). This resulted in 801,108 pairs, of which 500 were known to be true-positive gene pairs, and these were therefore removed from the set of true-negative gene pairs.

We trained the classifier on this gold standard and constructed functional human gene networks on the basis of GO data, microarray coexpression data, and inferred protein-protein interactions, as well as combinations of these. First, for each gene pair, we assessed whether the genes shared GO annotations, which were derived for 15,045 genes from Ensembl. Sharing of GO terms was based on the frequency of the least-common GO term shared between two genes and the maximal depth in the GO hierarchy at which two shared terms lay. Gene coexpression was calculated in 186 microarray data sets derived from GEO and 75 data sets from SMD. However, most of these data sets were not highly informative, as judged by their ability to identify true-positive gene interactions with a low false-positive rate. Because it is known that many classifiers perform best when a subset of features are used,37,38 we used only four informative microarray coexpression data sets for classification,3942 each showing a minimal AUC of 0.59. In total, these data sets contained 461 microarray hybridizations. Finally, protein-protein interactions were derived from the Lehner and Fraser20 data set containing human protein interactions predicted by mapping physical protein interactions from various Saccharomyces cerevisiae, Drosophila melanogaster, and Caenorhabditis elegans interaction data sets to orthologous human gene pairs. Of the 71,806 predicted gene pairs, we were able to physically map 62,635 gene pairs with both genes in the pair mapping to known Ensembl genes. A subset was defined by Lehner and Fraser20 that contained 10,652 gene pairs deemed to be of higher confidence, of which 10,139 gene pairs could be mapped. In addition, we used 3,186 human protein-protein interactions identified by automated Y2H interaction mating by Stelzl et al.,19 of which 1,751 could be mapped to different Ensembl gene pairs.

We assessed the performance of our classifier on the basis of these various data sources in three different gene networks generated on the basis of a Bayesian framework, after preprocessing and binning of the data sets. As mentioned above, one network was generated solely on the basis of GO data (GO network), one network was based on both microarray coexpression and predicted protein-protein interaction data (MA+PPI network), and an overall network contained all three types of data (GO+MA+PPI network). ROC curves (fig. 3) show the performance of the reconstructed GO, MA+PPI, and GO+MA+PPI gene networks, which were constructed by cross-validating all data sets 10 times against the gold standard set, to mitigate overfitting (details provided in appendix A). When we compared the performance of the various gene networks, it became evident that the GO data set provided the most accurate evidence for interaction. The AUC was 88%, compared with 50% for an uninformative classifier. The ROC for the MA+PPI network shows that coexpression data derived from microarray expression, in conjunction with the orthologous protein-protein interaction data, correctly inferred functional interactions (AUC=68%), but to a lesser extent than the GO network. Nevertheless, as can be deduced from the GO+MA+PPI network, addition of the microarray coexpression and the orthologous protein-protein interaction data to the GO network improved slightly the accuracy of the network (AUC=90%). In accordance with most networks described in the literature thus far,43 our reconstructed networks have a connectivity that follows a scale-free power-law distribution, which has also been demonstrated for other organisms.4446 This is most apparent when the topology of the MA+PPI network is assessed (see appendix A).

Figure 3.

Figure  3

ROC curve of the GO network, the MA+PPI network, and the combined GO+MA+PPI network. The baseline (solid gray line) indicates the performance of a classifier that would be totally uninformative.

To validate our network, we used a list of 2,574 Y2H interactions that recently became available47 to assess whether our gene network had predicted an interaction for these gene pairs. We first mapped the set to Ensembl pairs and then removed all pairs that were in our gold standard true-positive set, to ensure that we only assessed newly identified interactions. This resulted in a set of 1,318 novel gene pairs.

We then assessed whether our gene network had predicted an interaction for these pairs. While Y2H interactions are known to regularly yield false-positive results,48 we decided to test whether the distribution of likelihood ratios for these gene pairs was significantly different from a null distribution of 10,000 gene pairs sampled by generation of random gene pairs by selecting two genes at a time from the set of all individual genes that made up the Y2H gene pairs. The results show that the 1,318 Y2H gene pairs have a significantly higher likelihood ratio than the null distribution (P=.0003, by Wilcoxon Mann-Whitney test), which indicates that our gene network is capable of inferring as-yet-unknown interactions.

To allow researchers to look up known and predicted interactions and to identify the shortest routes between genes and susceptibility loci, we developed a Web tool, which is publicly available at the GeneNetwork Web site. The known and predicted interactions can be shown for each gene of interest, along with information about the source of evidence from which they were derived and how strong this evidence was. In addition, there are interactive graphs to visually explore how multiple genes interact with each other. All the data files (including the sets of true-positive and true-negative gene pairs) can be downloaded, along with a Java application programming interface, which can facilitate the development of new methods that use this gene network. Every 2 mo, we will update the gene network, on the basis of the most recent releases of the various repositories used in its construction.

Increased Functional Interactions Shown by Genes Associated with a Particular Disease

We first examined our hypothesis that genes associated with genetic disorders frequently share functional links, by assessing whether, for a disease, these causative genes were functionally more closely related to each other than a set of genes of equal size that were randomly selected from the full set of 345 unique disease genes of the 409 disease genes that were extracted from OMIM entries on disorders for which at least three causative genes were known. This set of disease genes was used as a background distribution to prevent bias, since the disease genes are generally better characterized than the complete set of genes in the network. We generated one extra network (GO+MA+PPI+TP network) that complemented the GO+MA+PPI network with all known true-positive gene pairs, and we calculated the shortest direct or indirect distance between all pairs of genes. In 76 (79%) of the 96 diseases, the total distance between all combinations of disease genes in one disease was, on average, lower than the total distance between all combinations of randomly selected disease genes in 10,000 permutations. This confirms our hypothesis that, in the majority of diseases, the causative genes are indeed closely related functionally.

Genes implicated in disease processes tend to be studied more than those not implicated, which could result in a bias in the gene network based on GO annotations, since these represent known functional annotations. To assess the degree to which this possible bias affected our gene network, we looked at network connectivity. The average number of direct interactions involving disease genes was 199, compared with an average of 203 for the other 11,875 genes that interacted with at least one other gene. This indicates that other genes are equally represented in the gene network, despite the fact that disease genes may have been studied more.

Increased Power to Detect Disease Genes Provided by a Functional Gene Network

Usually, researchers pick a limited number of candidate genes in susceptibility loci to follow-up, because it is too costly and labor intensive to analyze all the genes residing in these loci. As a result, these studies have a limited chance of finding disease-related variants, largely depending on the size of the loci and the number of genes selected. Using a test set of known disorders in a similar setup, we evaluated the ability of our reconstructed network to correctly prioritize positional candidate genes in a set of top-ranked candidate genes of typical size (5–10 genes). The test set consisted of 96 different disorders, for which a total of 409 disease genes (345 unique genes) had been identified. These were obtained from OMIM, with 3–10 disease genes per disease (average 4.3 genes per disease) (table A1 in appendix A). Of the diseases, 59 are of Mendelian origin, 17 have complex inheritance, and 20 are various types of cancer (table 1).

Table 1.

Overview of the 96 Diseases Studied with Prioritizer and the Number of Disease Genes per Disorder That Ranked in the Top 10 Genes per Susceptibility Locus, With Locus Widths of 100 and 150 Genes

No. of Genes Ranking in Top 10at Locus Width of 100 Genes
No. of Genes Ranking in Top 10at Locus Width of 150 Genes
Disease Type and Disease OMIM
Number
No. of
Genes
MA+PPI GO GO+MA+PPI GO+MA+PPI+TP MA+PPI GO GO+MA+PPI GO+MA+PPI+TP
Mendelian inheritance (59 diseases):
 Achromatopsia 2 216900 3 0 0 1 0 0 0 0 0
 Achromatopsia 3 262300 3 0 0 1 0 0 0 0 0
 Adrenoleukodystrophy, autosomal neonatal form 202370 5 0 4 2 4 0 4 2 3
 Amyloidosis VI 105150 3 1 1 0 1 0 0 0 1
 Amyloidosis, familial visceral 105200 3 0 0 0 0 0 0 0 0
 Amyotrophic lateral sclerosis 1 105400 5 0 1 0 0 0 1 0 0
 Atypical mycobacteriosis, familial 209950 5 1 4 2 4 1 1 0 1
 Autonomic control, congenital failure of 209880 5 0 0 1 1 0 0 1 1
 Bardet-Biedl syndrome 209900 8 0 2 2 3 0 1 1 1
 Bare lymphocyte syndrome, type II 209920 4 1 0 1 4 0 0 1 4
 Cardiomyopathy, familial hypertrophic 192600 9 0 7 4 4 0 7 3 3
 Cholestasis, intrahepatic, of pregnancy 147480 3 1 0 0 0 0 0 0 0
 Cholestasis, progressive familial intrahepatic 1 211600 4 1 1 1 0 0 1 1 1
 Complex I, mitochondrial respiratory chain, deficiency of 252010 5 0 5 4 5 0 3 3 3
 Coumarin resistance 122700 4 0 0 0 1 0 0 0 0
 Dementia, Lewy body 127750 3 1 0 0 0 0 0 0 0
 Epidermolysis bullosa junctionalis, disentis type 226650 4 1 0 1 0 0 0 0 0
 Epidermolysis bullosa of hands and feet 131800 4 0 1 2 1 0 0 1 1
 Fanconi anemia 227650 6 1 0 1 6 1 0 0 6
 Fundus albipunctatus 136880 4 0 1 0 3 0 1 1 2
 Generalized epilepsy with febrile seizures plus 604233 3 2 2 2 1 1 0 1 0
 Glutaricaciduria IIA 231680 3 3 2 3 3 3 1 3 3
 Hermansky-Pudlak syndrome 203300 6 0 1 0 0 0 0 0 0
 Hirschsprung disease 142623 6 1 0 0 1 1 0 0 1
 Hydrops fetalis, idiopathic 236750 4 0 0 1 0 0 0 1 0
 Hypercholesterolemia, familial 143890 6 0 2 3 1 0 1 2 1
 Hypertrophic neuropathy of Dejerine-Sottas 145900 4 0 2 2 2 1 1 1 1
 Hypokalemic periodic paralysis 170400 3 0 0 0 2 0 0 0 0
 Ichthyosiform erythroderma, congenital, nonbullous, 1 242100 3 0 2 2 1 0 1 1 1
 Immunodeficiency with hyper-IgM, type 2 605258 3 0 1 0 2 0 1 0 1
 Immunodeficiency with hyper-IgM, type 3 606843 3 0 2 0 2 0 1 0 1
 Kartagener syndrome 244400 3 1 2 2 1 0 2 2 1
 Keratosis palmoplantaris striata I 148700 3 0 1 1 3 0 1 1 3
 Laron syndrome, type II 245590 3 0 1 0 2 0 0 0 1
 Leber congenital amaurosis, type I 204000 7 0 3 2 1 0 0 1 2
 Leigh syndrome 256000 6 3 4 3 3 1 4 3 3
 Leukoencephalopathy with vanishing white matter 603896 5 5 5 5 5 5 5 5 4
 Maple syrup urine disease, type IA 248600 4 1 1 1 4 0 0 0 3
 Maturity-onset diabetes of the young 606391 5 1 0 1 3 1 0 1 0
 Myasthenic syndrome, congenital, fast-channel 608930 3 0 2 2 3 0 2 2 3
 Myasthenic syndrome, slow-channel congenital 601462 3 0 2 2 1 0 2 2 2
 Myoclonic dystonia 159900 3 0 0 0 1 0 0 0 1
 Nemaline myopathy 1, autosomal dominant 161800 3 0 1 1 0 0 1 1 0
 Nesidioblastosis of pancreas 256450 3 0 1 0 0 0 1 1 0
 Night blindness, congenital stationary 163500 3 0 0 1 0 0 0 0 0
 Obsessive-compulsive disorder 1 164230 3 0 1 0 0 0 0 0 0
 Ossification of the posterior longitudinal ligament of spine 602475 3 0 0 0 1 0 0 0 0
 Osteopetrosis, autosomal recessive 259700 3 1 0 0 0 0 0 0 0
 Peters anomaly 604229 4 0 0 1 2 0 0 0 0
 Pituitary dwarfism III 262600 3 0 0 0 2 0 0 0 1
 Progressive external ophthalmoplegia 157640 3 1 1 0 0 0 0 0 0
 Pseudohypoaldosteronism, type I, autosomal recessive 264350 3 0 2 2 1 0 2 2 0
 Pulmonary alveolar proteinosis 265120 3 0 2 1 0 0 2 1 0
 Refsum disease, infantile form 266510 3 1 1 1 2 0 1 1 2
 Reticulosis, familial histiocytic 267700 3 0 0 0 0 0 0 0 0
 Rhizomelic chondrodysplasia punctata, type 3 600121 3 0 1 0 2 0 1 0 1
 Stickler syndrome, type I 108300 3 0 0 0 2 0 0 0 0
 Waardenburg-Shah syndrome 277580 3 0 1 1 1 0 2 1 0
 Zellweger syndrome 214100 8 1 4 4 7 1 3 4 5
Complex inheritance (17 diseases):
 Alzheimer disease 104300 8 0 1 0 3 0 1 1 2
 Diabetes mellitus, non–insulin-dependent 125853 9 2 0 3 1 1 0 2 2
 Elliptocytosis, Rhesus-unlinked type 130600 3 0 1 0 3 0 1 0 2
 Graves disease 275000 3 0 1 0 1 0 0 0 0
 Hypertension, essential 145500 7 1 1 0 0 0 0 0 0
 Hypospadias 146450 3 0 0 0 1 0 0 0 1
 IgA nephropathy 161950 4 1 0 0 1 1 0 0 1
 Inflammatory bowel disease 1 266600 4 0 0 1 1 0 0 0 1
 Longevity 152430 4 0 1 0 0 1 0 0 0
 Lupus erythematosus, systemic 152700 4 0 0 0 0 0 0 0 0
 Mycobacterium tuberculosis, susceptibility to infection by 607948 3 0 0 0 0 0 0 0 0
 Myoclonic epilepsy, juvenile 606904 4 0 1 0 1 0 1 0 0
 Obesity 601665 7 1 1 1 4 2 0 1 3
 Osteoporosis, involutional 166710 5 0 1 1 0 0 3 1 2
 Parkinson disease 168600 4 0 0 0 4 0 1 0 3
 Rheumatoid arthritis 180300 5 0 0 0 0 0 0 0 1
 Sudden infant death syndrome 272120 3 0 2 2 0 0 1 1 0
Heritable cancer (20 diseases):
 Bladder cancer 109800 3 0 0 0 0 0 0 1 0
 Breast cancer 114480 10 2 1 4 2 1 0 2 1
 Chondrosarcoma 215300 4 1 1 0 2 0 0 0 1
 Esophageal cancer 133239 8 1 0 1 5 1 0 0 2
 Glioma of brain, familial 137800 6 1 1 1 0 2 1 0 0
 Hepatocellular carcinoma 114550 3 0 0 0 1 1 0 0 0
 Juvenile myelomonocytic leukemia 607785 4 0 3 2 1 0 1 1 1
 Leiomyoma, uterine 150699 4 0 0 1 0 0 0 0 0
 Lung cancer 211980 4 1 0 1 2 0 0 1 0
 Lymphoma, non-Hodgkin, familial 605027 4 0 2 2 2 0 1 1 2
 Medulloblastoma 155255 4 1 0 2 2 1 0 1 0
 Myeloma, multiple 254500 4 1 1 0 0 1 0 0 1
 Osteogenic sarcoma 259500 3 0 0 0 0 0 0 0 1
 Pancreatic carcinoma 260350 6 1 1 1 0 1 0 1 0
 Pheochromocytoma 171300 3 0 0 0 0 0 0 0 0
 Prostate cancer 176807 9 1 0 1 0 0 0 0 0
 Renal cell carcinoma, papillary 605074 3 1 0 0 1 1 0 0 1
 Rhabdomyosarcoma 2 268220 3 0 0 0 0 0 0 0 0
 Thyroid carcinoma, papillary 188550 5 2 0 0 0 1 0 0 0
 Turcot syndrome 276300 3 2 2 2 1 2 2 3 2
  Total 409 49 (12%) 99 (24%) 93 (23%) 138 (34%) 33 (8%) 67 (16%) 68 (17%) 98 (24%)

The ability of the functional human gene network to correctly prioritize known disease genes was assessed by creating artificial, nonoverlapping susceptibility loci around these disease genes. Since many genes in these loci have no known or predicted interactions in our network, we only assessed those genes for which interactions were predicted, to prevent a bias toward genes that were better represented in the underlying high-throughput data sets. This resulted in susceptibility loci of varying widths, containing 50, 100, or 150 genes, which were predicted to interact with at least one other gene. If, for any particular disease, two disease genes residing in the same chromosome yielded loci that were partly overlapping, one of the two loci was randomly removed.

For each locus, the genes were traversed, and, for each gene, we assessed whether there was another gene residing in a different locus that was nearby within the gene network. The effect scores (see the “Material and Methods” section) of each gene were affected by the gene in the other locus that had the shortest path to that gene. This procedure has the potential to preferentially identify genes with many interacting partners over genes that are less well connected, because a highly connected gene has a higher chance of interacting with a gene residing in another locus than a gene for which only a few interactions have been predicted. To overcome bias in the method toward genes that are highly connected, we corrected for differences in the network topology by permuting the susceptibility loci for each disease 500 times across the genome.

After all positional candidate genes were ranked on the basis of this permuted score, the results (see fig. 4 and table 1) indicated that this method was able to identify many of the disease genes in the top 5 or top 10 genes per locus. As expected from the ROC curves of the various gene networks (fig. 3), the performance of the MA+PPI network proved to be the least powerful. Nevertheless, the number of correctly ranked genes was higher than would be expected to occur by chance (fig. 4a and 4b; indicated by baseline) for many of the susceptibility loci widths. When assessing susceptibility loci that contained, on average, 100 genes, we found 8% and 12% of the disease genes were contained within the top 5 and top 10 per locus, respectively, compared with the 5% and 10% we would expect to find by chance. A lack of predictive performance of the MA+PPI network explains why the ranking did not improve considerably when this network was used, as is evident from inspection of the ROC curves (fig. 4c), which show the proportion of disease genes and nondisease genes that are returned when different sizes of sets of top-ranked genes per locus are assessed. For 86 of the 345 unique disease genes within the MA+PPI network, no interactions were predicted. Hence, they were ranked low, the more so because the 49, 99, or 149 other genes, residing together with each disease gene in the constructed susceptibility loci, had been selected on the premise that they interacted with at least one other gene. The GO network performed considerably better; when we used it to assess susceptibility loci that contained, on average, 100 genes, we found 16% and 24% of the disease genes were contained within the top 5 and top 10 genes per locus, respectively. The performance of the disease analysis was best when the inferred GO+MA+PPI network was complemented with the known true-positive interactions (GO+MA+PPI+TP network); with this network and an average susceptibility locus width of 100 genes, 27% and 34% of the disease genes were contained within the top 5 and top 10 per locus, respectively.

Figure 4.

Figure  4

Accuracy of positional candidate-gene prioritization. a and b, Percentage of the 409 disease genes that was ranked among the top 5 (a) or top 10 (b) genes per locus, after artificial susceptibility loci of varying widths around these genes were constructed and when different types of gene networks were used. The baselines (gray lines) indicate the percentage of disease genes expected to rank among the top 5 or top 10 genes by chance. c, ROC curves for susceptibility loci that contain 50, 100, or 150 genes.

We also assessed the probability of detecting at least one disease gene when only a fixed number of top-ranked genes per locus is followed up (fig. 5). When we employed the most comprehensive GO+MA+PPI+TP network and followed up all the top 5 or top 10 positional candidate genes for each disorder, using locus widths of 100 and 150 genes, we found at least one disease gene from these top sets of genes in 54% and 64% of the diseases, respectively, compared with 19% and 35% expected by chance. When we confined our analysis to diseases for which at least four or five disease genes were known, the performance of our method increased slightly (data not shown), because the true disease genes now interacted with more of the other true disease genes, increasing their overall scores.

Figure 5.

Figure  5

Probability of detecting at least one disease gene when a fixed number of top-ranked positional candidate genes—as ranked by Prioritizer—are followed up for each locus. Each locus contains either 100 or 150 genes, and the GO+MA+PPI+TP network was employed. The baselines (dashed lines) show the probability of detecting at least one disease gene if a fixed number of arbitrarily chosen genes in each locus are followed up.

Breast Cancer as an Example

We selected breast cancer as an example of how the various gene networks perform in a complex disease for which multiple disease genes have been identified. Artificial susceptibility loci, each comprising 100 genes, were constructed around 10 putative breast cancer genes described in OMIM (as of March 1, 2005). For each of the four networks, we then determined how many of the disease genes were ranked within the top 10 per locus. The MA+PPI network ranked two disease genes (PIK3CA and CHEK2) in the top 10, whereas the GO network ranked three (BRCA2, NCOA3, and CHEK2), and the GO+MA+PPI network ranked four (BARD1, PIK3CA, TP53, and CHEK) (fig. 6). However, the GO+MA+PPI+TP network, which integrates the most information, performed the worst; of the 10 disease genes now known, only 2 (BARD1 and BRCA1) were ranked in the top 10. This can be explained by the observation that the true-positive set contained many known interactions for these 10 breast cancer genes. As the ranking procedure corrects for the topology of the network, these disease genes, with a marked increase in the number of relationships with other genes in this most comprehensive network, were suddenly no longer ranked as high. This became evident when the genes were ranked using the GO+MA+PPI+TP network but the differences in topology were not corrected for: 9 of the 10 breast cancer genes were then in the top 10 per locus.

Figure 6.

Figure  6

Prioritizer analysis of breast cancer. Susceptibility loci, each containing 100 genes, were defined around 10 known breast cancer genes. The 10 highest-ranked genes for each locus are shown in the graph, with colors indicating the locus in which they reside. Use of the GO+MA+PPI network led to four breast cancer genes (PIK3CA, CHEK2, BARD1, and TP53 [circles]) being ranked in the top 10. Chr. = chromosome.

Prioritizer Availability

To allow researchers to analyze susceptibility loci of interest, we developed a Java application that can be downloaded, along with regularly updated gene network definition files and source code from the Prioritizer Web site. After a set of susceptibility loci has been entered, Prioritizer ranks the positional candidate genes in each locus by using the method described above in conjunction with one of the four gene networks. It can generate two- and three-dimensional graphs of the top-ranked positional candidate genes, which allows the user to visually inspect how the genes within the different loci interact with each other.

Discussion

In this study, we describe the construction of a functional human gene network of considerable accuracy (fig. 3; AUC=90%). As such, it can be used to assess interactions for a gene of interest through the bioinformatics tools that we have made available online. We have shown that, in cases where multiple genes underlie a disorder, these genes tend to have more functional interactions. When these functional interactions are employed to prioritize known disease genes in artificial susceptibility loci, the chance of detecting disease genes is increased considerably (2.8 fold).

In breast cancer, 4 of the 10 disease genes were ranked in the top 10 when the GO+MA+PPI network was applied, a fourfold enrichment over the single disease gene that would be picked up by chance. As has been discussed earlier, the correction for differences in topology is needed to prevent bias toward highly connected genes. However, this puts diseases in which underlying genes have a high degree of connectivity at a disadvantage, which was apparent in the analysis of breast cancer by use of the GO+MA+PPI+TP network. When this topology correction was omitted for breast cancer, the ranking of the disease genes improved considerably, to include 9 of the 10 genes. The availability of new high-throughput data sets will alleviate this problem in the future, by providing novel interactions for genes that currently have a low degree of connectivity, which will reduce the penalty on highly connected genes.

We noticed that the performance of Prioritizer was lower for complex disorders than for Mendelian disorders. This is likely caused by the fact that the etiology of complex diseases is more subtle and involves multiple pathways, so that most of the disease genes only confer a modest increased risk. Greater coverage of the gene network, leading to identification of relationships between genes that bridge the various pathways, could probably help to alleviate this problem.

When the accuracy of the various gene networks was assessed by investigation of their respective ROCs, it was envisaged that the GO+MA+PPI network would perform at least at a similar level in prioritizing disease genes as the GO network, because its AUC was greater. However, contrary to our expectation, when the positional candidate genes were prioritized, the disease genes in some diseases were ranked lower with the GO+MA+PPI network than with the GO network. One explanation could be that, within the microarray coexpression data sets (the main contributor to the MA+PPI network), we did not distinguish between coexpression and coregulation. As such, many direct interactions between genes were inferred, but a large proportion of these interactions were actually indirect. Methods have recently appeared33,49 that could help remove some of these incorrectly inferred interactions.

In a somewhat comparable method by Turner et al.,21 positional candidate genes are prioritized by determining which genes share InterPro50 domains and GO terms, as a measure to relate genes in susceptibility loci with each other. Our method extends this approach by also allowing for indirect relationships between individual disease genes, since Prioritizer uses the graph-theoretic distance between genes to relate them. Both approaches still rely largely on manual annotation, which is detrimental for genes that have not been investigated extensively. When no experimental evidence for interaction is available, there is only a small chance that these potential disease genes, residing in one specific susceptibility locus, will be associated with disease genes in other loci, since the sharing of GO or InterPro terms between these genes will be minimal. Although GO contributes the most to the performance of the Bayesian classifier, we should not depend entirely on a prediction if there is substantial evidence only from GO, while the evidence from the other data sets is lacking, for a specific gene pair, because the GO evidence has been inferred from the sharing of predominantly manually annotated terms, whereas the other sources rely more on direct biological measurements. It is expected that, when additional high-throughput data sets become available and their coverage of all possible functional interactions increases, GO evidence will be supplemented by experimental data, resulting in better predictions.

As such, an extensive and reliable functional gene network is crucial for good performance of our method. If this network is inaccurate or biased toward known genes, the ranking of true disease genes in the susceptibility loci will deteriorate. Several rapidly expanding data repositories are now becoming available that should help to improve our network. They include text mining methods,51,52 which extract functional relationships from the literature, and methods that integrate results from high-throughput proteomic approaches.53

Our gene network, which, in its current form, has been applied to genetic linkage analysis, can also be used for other applications. Recently, efforts have been made to prioritize positional candidate genes on the basis of their expression,54 with the assumption that differences in expression behavior in comparisons of patients with controls may be due to cis-acting variants in the underlying genes. However, it has turned out that, in most genes, differences in expression are determined by genetic variation in genes located elsewhere.55,56 The reconstructed functional gene network can help to relate the observed differences in gene expression to the underlying causative genetic variants in other genes, which might help in identifying the disease genes.

Prioritizer might also be well suited for genomewide SNP association studies. Technical improvements in conjunction with decreasing costs now allow researchers to perform these studies in complex diseases, thereby considerably increasing the resolution at which one can assess genetic variation. However, as the number of tested SNPs increases, the number of tested individuals required to achieve sufficient power will also rise. To help overcome this problem, a new statistical method has recently been developed57 that combines evidence from the most-significant tests, under the assumption that there are multiple true associations in the disease under investigation. However, within this confined set, the majority of genes will still be false positives because of power issues. Our positional candidate-gene prioritization method can easily be adapted to help distinguish true disease-associated genes and false-positive genes, by assuming that the true disease genes are mostly functionally related and will therefore be closer to each other in the gene network than to the false-positive genes that have been randomly selected.

We have demonstrated that it is feasible to use gene networks to prioritize positional candidate genes in various heritable disorders with multiple associated genes, even when the susceptibility loci are fairly large. As such, this article and the proposed methods show that the integration of gene networks with various genetic studies can be useful in identifying disease genes. We envisage that improvements both in the quality of the data sets making up these gene networks and in the statistical methods incorporating the networks will result in new, genetically testable hypotheses.

Acknowledgments

We thank Jackie Senior and members of the Complex Genetics Section and the Department of Human Genetics for critically reading the manuscript. This study was supported by Netherlands Organization for Scientific Research grant 901-04-219 and by a grant from the Celiac Disease Consortium, an innovative cluster approved by the Netherlands Genomics Initiative and partially funded by a Dutch government grant (BSIK03009).

Appendix A

Table A1.

All Disease Genes for the 96 Diseases Tested and How They Rank When a Locus Width of 50, 100, or 150 Genes Is Used

MA+PPI GO GO+MA+PPI GO+MA+PPI+TP
Locus Width and Disease Gene (Ensembl) HUGO Disease Name; Abbreviation OMIMNumber Rank P Rank P Rank P Rank P
50 Genes:
 ENSG00000091513 TF Alzheimer disease; AD 104300 42 .24 27 .45 26 .46 2 .07
 ENSG00000175899 A2M Alzheimer disease; AD 104300 47 .89 21 .40 34 .59 1 .02
 ENSG00000143801 PSEN2 Alzheimer disease; AD 104300 9 .02 3 .05 20 .53 27 .58
 ENSG00000123384 LRP1 Alzheimer disease; AD 104300 50 1.00 16 .23 11 .17 5 .04
 ENSG00000142192 APP Alzheimer disease; AD 104300 25 .09 33 .48 25 .49 6 .15
 ENSG00000130203 APOE Alzheimer disease; AD 104300 26 .07 25 .71 44 .84 1 .00
 ENSG00000010704 HFE Alzheimer disease; AD 104300 40 .19 13 .57 31 .57 1 .00
 ENSG00000080815 PSEN1 Alzheimer disease; AD 104300 4 .02 1 .06 26 .55 44 .78
 ENSG00000101439 CST3 Amyloidosis VI 105150 3 .10 40 .81 31 .72 34 .82
 ENSG00000165029 ABCA1 Amyloidosis VI 105150 50 1.00 47 .94 36 .81 24 .62
 ENSG00000136156 ITM2B Amyloidosis VI 105150 22 .74 47 .83 11 .40 45 .99
 ENSG00000171560 FGA Amyloidosis, familial visceral 105200 50 1.00 43 .79 28 .57 25 .54
 ENSG00000090382 LYZ Amyloidosis, familial visceral 105200 23 .43 35 .52 46 .95 23 .56
 ENSG00000118137 APOA1 Amyloidosis, familial visceral 105200 5 .06 24 .32 46 .95 13 .45
 ENSG00000124164 VAPB Amyotrophic lateral sclerosis 1; ALS1 105400 12 .09 21 .35 34 .42 2 .03
 ENSG00000003393 ALS2 Amyotrophic lateral sclerosis 1; ALS1 105400 50 1.00 24 .32 46 .62 39 .58
 ENSG00000142168 SOD1 Amyotrophic lateral sclerosis 1; ALS1 105400 21 .10 1 .00 27 .23 36 .51
 ENSG00000100285 NEFH Amyotrophic lateral sclerosis 1; ALS1 105400 18 .11 7 .08 29 .21 28 .32
 ENSG00000135406 PRPH Amyotrophic lateral sclerosis 1; ALS1 105400 20 .08 50 1.00 9 .04 29 .21
 ENSG00000112112 COL11A2 Stickler syndrome, type I; STL1 108300 14 .58 33 .78 46 .77 2 .04
 ENSG00000139219 COL2A1 Stickler syndrome, type I; STL1 108300 50 1.00 22 .50 46 .77 12 .32
 ENSG00000060718 COL11A1 Stickler syndrome, type I; STL1 108300 50 1.00 40 .78 24 .62 2 .04
 ENSG00000139687 RB1 Bladder cancer 109800 37 .66 37 .58 11 .25 28 .46
 ENSG00000068078 FGFR3 Bladder cancer 109800 32 .71 12 .23 30 .85 16 .35
 ENSG00000174775 HRAS Bladder cancer 109800 9 .25 3 .06 30 .48 38 .88
 ENSG00000139618 BRCA2 Breast cancer 114480 27 .06 5 .01 9 .05 2 .00
 ENSG00000138376 BARD1 Breast cancer 114480 12 .03 37 .32 2 .01 6 .01
 ENSG00000124151 NCOA3 Breast cancer 114480 31 .17 5 .01 5 .01 8 .02
 ENSG00000121879 PIK3CA Breast cancer 114480 10 .02 32 .35 2 .01 25 .16
 ENSG00000012048 BRCA1 Breast cancer 114480 11 .01 13 .08 6 .02 1 .01
 ENSG00000170836 PPM1D Breast cancer 114480 23 .07 22 .14 16 .06 9 .03
 ENSG00000141510 TP53 Breast cancer 114480 11 .02 24 .07 4 .01 19 .13
 ENSG00000023287 RB1CC1 Breast cancer 114480 20 .03 43 .60 48 .72 26 .17
 ENSG00000183765 CHEK2 Breast cancer 114480 3 .01 8 .01 6 .02 17 .11
 ENSG00000169083 AR Breast cancer 114480 50 1.00 23 .15 22 .14 16 .14
 ENSG00000105976 MET Hepatocellular carcinoma 114550 33 .51 15 .22 7 .14 10 .16
 ENSG00000168036 CTNNB1 Hepatocellular carcinoma 114550 16 .23 44 .89 11 .24 23 .48
 ENSG00000141510 TP53 Hepatocellular carcinoma 114550 21 .51 15 .36 50 .93 49 .99
 ENSG00000138109 CYP2C9 Coumarin resistance 122700 10 .30 41 .84 36 .71 10 .16
 ENSG00000167397 VKOR1_HUMAN Coumarin resistance 122700 16 .18 21 .48 39 .47 2 .02
 ENSG00000198470 CYP2A6 Coumarin resistance 122700 32 .76 6 .09 40 .90 20 .33
 ENSG00000101981 F9 Coumarin resistance 122700 50 1.00 19 .29 16 .50 6 .15
 ENSG00000162992 NEUROD1 Diabetes mellitus, non–insulin-dependent; NIDDM 125853 8 .02 4 .01 49 .92 44 .53
 ENSG00000121653 MAPK8IP1 Diabetes mellitus, non–insulin-dependent; NIDDM 125853 48 .41 20 .29 36 .52 3 .02
 ENSG00000163581 SLC2A2 Diabetes mellitus, non–insulin-dependent; NIDDM 125853 28 .14 10 .08 4 .02 38 .30
 ENSG00000181856 SLC2A4 Diabetes mellitus, non–insulin-dependent; NIDDM 125853 21 .08 15 .09 5 .03 1 .00
 ENSG00000105221 AKT2 Diabetes mellitus, non–insulin-dependent; NIDDM 125853 24 .09 31 .50 45 .58 23 .15
 ENSG00000101076 HNF4A Diabetes mellitus, non–insulin-dependent; NIDDM 125853 4 .00 42 .52 16 .15 5 .04
 ENSG00000142330 CAPN10 Diabetes mellitus, non–insulin-dependent; NIDDM 125853 50 1.00 40 .50 27 .36 3 .00
 ENSG00000135100 TCF1 Diabetes mellitus, non–insulin-dependent; NIDDM 125853 50 1.00 42 .43 38 .59 7 .04
 ENSG00000104918 RETN Diabetes mellitus, non–insulin-dependent; NIDDM 125853 35 .18 24 .27 50 1.00 20 .14
 ENSG00000171867 PRNP Dementia, Lewy body; DLB 127750 23 .34 50 1.00 27 .64 22 .65
 ENSG00000145335 SNCA Dementia, Lewy body; DLB 127750 10 .10 47 .94 12 .40 31 .60
 ENSG00000130203 APOE Dementia, Lewy body; DLB 127750 40 .69 47 .95 22 .61 31 .74
 ENSG00000070182 SPTB Elliptocytosis, Rhesus-unlinked type 130600 50 1.00 2 .05 35 .99 1 .00
 ENSG00000163554 SPTA1 Elliptocytosis, Rhesus-unlinked type 130600 23 .22 3 .07 4 .14 1 .00
 ENSG00000004939 SLC4A1 Elliptocytosis, Rhesus-unlinked type 130600 12 .14 7 .16 22 .86 2 .03
 ENSG00000186847 KRT14 Epidermolysis bullosa of hands and feet 131800 50 1.00 12 .03 1 .01 9 .01
 ENSG00000186081 KRT5 Epidermolysis bullosa of hands and feet 131800 50 1.00 10 .03 9 .02 3 .00
 ENSG00000132470 ITGB4 Epidermolysis bullosa of hands and feet 131800 50 1.00 19 .33 17 .22 43 .61
 ENSG00000114270 COL7A1 Epidermolysis bullosa of hands and feet 131800 13 .13 20 .36 24 .30 13 .24
 ENSG00000127870 RNF6 Esophageal cancer 133239 38 .65 29 .24 20 .21 24 .27
 ENSG00000134982 APC Esophageal cancer 133239 1 .00 33 .38 47 .55 29 .25
 ENSG00000147889 CDKN2A Esophageal cancer 133239 50 1.00 22 .22 14 .14 22 .46
 ENSG00000008226 DLEC1 Esophageal cancer 133239 50 1.00 16 .21 6 .13 10 .15
 ENSG00000061337 LZTS1 Esophageal cancer 133239 50 1.00 45 .73 20 .17 16 .12
 ENSG00000141510 TP53 Esophageal cancer 133239 21 .37 42 .70 17 .30 2 .03
 ENSG00000187323 DCC Esophageal cancer 133239 50 1.00 12 .11 4 .08 5 .03
 ENSG00000186153 NP_570606.1 Esophageal cancer 133239 22 .31 27 .36 30 .41 2 .01
 ENSG00000140522 RLBP1 Fundus albipunctatus 136880 37 .38 15 .35 43 .79 1 .01
 ENSG00000112619 RDS Fundus albipunctatus 136880 50 1.00 23 .48 25 .50 12 .31
 ENSG00000135437 RDH5 Fundus albipunctatus 136880 50 1.00 23 .39 31 .77 1 .02
 ENSG00000130203 APOE Fundus albipunctatus 136880 29 .58 49 .96 45 .83 23 .49
 ENSG00000063169 GLTSCR1 Glioma of brain, familial 137800 41 .39 50 1.00 50 1.00 50 1.00
 ENSG00000111087 GLI1_HUMAN Glioma of brain, familial 137800 43 .57 9 .04 6 .03 22 .22
 ENSG00000108231 LGI1 Glioma of brain, familial 137800 22 .17 50 1.00 50 1.00 50 1.00
 ENSG00000147889 CDKN2A Glioma of brain, familial 137800 50 1.00 36 .73 8 .08 20 .29
 ENSG00000146648 EGFR Glioma of brain, familial 137800 5 .04 15 .19 32 .41 43 .77
 ENSG00000132170 PPARG Glioma of brain, familial 137800 13 .11 32 .41 10 .07 29 .53
 ENSG00000117298 ECE1 Hirschsprung disease 142623 28 .30 49 .71 26 .32 21 .30
 ENSG00000136160 EDNRB Hirschsprung disease 142623 50 1.00 41 .52 47 .79 5 .05
 ENSG00000169554 ZFHX1B Hirschsprung disease 142623 3 .01 10 .12 7 .05 5 .05
 ENSG00000165731 RET Hirschsprung disease 142623 9 .06 23 .27 24 .26 30 .30
 ENSG00000124205 EDN3 Hirschsprung disease 142623 50 1.00 10 .12 21 .21 3 .05
 ENSG00000168621 GDNF Hirschsprung disease 142623 50 1.00 46 .79 15 .13 12 .16
 ENSG00000130164 LDLR Hypercholesterolemia, familial 143890 10 .29 2 .02 4 .03 1 .00
 ENSG00000055955 ITIH4 Hypercholesterolemia, familial 143890 40 .71 45 .71 36 .44 49 .97
 ENSG00000158874 APOA2 Hypercholesterolemia, familial 143890 50 1.00 23 .34 17 .23 3 .04
 ENSG00000169174 PCSK9 Hypercholesterolemia, familial 143890 3 .04 27 .30 36 .56 12 .07
 ENSG00000120915 EPHX2 Hypercholesterolemia, familial 143890 27 .27 41 .53 33 .40 10 .10
 ENSG00000084674 APOB Hypercholesterolemia, familial 143890 15 .28 3 .12 5 .10 7 .18
 ENSG00000111664 GNB3 Hypertension, essential 145500 3 .02 14 .11 40 .42 20 .25
 ENSG00000124212 PTGIS Hypertension, essential 145500 31 .26 14 .22 32 .30 33 .41
 ENSG00000087274 NP_789771.1 Hypertension, essential 145500 43 .36 26 .30 28 .33 47 .81
 ENSG00000106258 CYP3A5 Hypertension, essential 145500 37 .46 8 .13 42 .61 10 .10
 ENSG00000028137 TNFRSF1B Hypertension, essential 145500 6 .03 19 .20 23 .21 28 .43
 ENSG00000144891 AGTR1 Hypertension, essential 145500 47 .43 12 .09 33 .23 34 .30
 ENSG00000135744 AGT Hypertension, essential 145500 36 .22 11 .10 45 .53 8 .11
 ENSG00000105227 PRX Hypertrophic neuropathy of Dejerine-Sottas 145900 50 1.00 1 .00 1 .01 19 .32
 ENSG00000109099 PMP22 Hypertrophic neuropathy of Dejerine-Sottas 145900 45 .66 32 .52 38 .37 8 .13
 ENSG00000122877 EGR2 Hypertrophic neuropathy of Dejerine-Sottas 145900 5 .06 34 .68 27 .65 32 .78
 ENSG00000158887 MPZ Hypertrophic neuropathy of Dejerine-Sottas 145900 50 1.00 1 .02 1 .03 1 .03
 ENSG00000169083 AR Hypospadias 146450 50 1.00 36 .83 37 .83 40 .95
 ENSG00000101871 MID1 Hypospadias 146450 50 1.00 4 .06 30 .63 2 .01
 ENSG00000049319 SRD5A2 Hypospadias 146450 14 .22 23 .51 21 .48 20 .56
 ENSG00000005471 ABCB4 Cholestasis, intrahepatic, of pregnancy; ICP 147480 50 1.00 29 .51 19 .27 18 .36
 ENSG00000073734 ABCB11 Cholestasis, intrahepatic, of pregnancy; ICP 147480 50 1.00 42 .86 47 .92 13 .21
 ENSG00000081923 ATP8B1 Cholestasis, intrahepatic, of pregnancy; ICP 147480 19 .41 6 .19 35 .61 34 .85
 ENSG00000167768 KRT1 Keratosis palmoplantaris striata I 148700 48 .87 18 .29 33 .87 3 .01
 ENSG00000134760 DSG1 Keratosis palmoplantaris striata I 148700 50 1.00 5 .13 18 .50 2 .01
 ENSG00000096696 DSP Keratosis palmoplantaris striata I 148700 44 .73 1 .01 1 .01 1 .00
 ENSG00000111275 ALDH2 Leiomyoma, uterine 150699 37 .41 12 .21 46 .81 9 .28
 ENSG00000143196 DPT Leiomyoma, uterine 150699 47 .61 50 1.00 50 1.00 8 .08
 ENSG00000182185 RAD51L1 Leiomyoma, uterine 150699 50 1.00 31 .51 15 .22 31 .64
 ENSG00000164919 COX6C Leiomyoma, uterine 150699 34 .35 17 .22 32 .42 14 .17
 ENSG00000087237 CETP Longevity 152430 17 .15 23 .31 11 .19 43 .91
 ENSG00000108599 AKAP10 Longevity 152430 48 .67 7 .12 6 .08 16 .36
 ENSG00000136869 TLR4 Longevity 152430 8 .06 4 .07 46 .90 8 .24
 ENSG00000005421 PON1 Longevity 152430 50 1.00 5 .06 2 .03 10 .19
 ENSG00000126594 DNASE1 Lupus erythematosus, systemic; SLE 152700 45 .71 16 .27 37 .66 27 .57
 ENSG00000163599 CTLA4 Lupus erythematosus, systemic; SLE 152700 50 1.00 45 .85 50 1.00 14 .18
 ENSG00000134242 PTPN22 Lupus erythematosus, systemic; SLE 152700 15 .19 12 .19 8 .12 35 .75
 ENSG00000143226 FCGR2A Lupus erythematosus, systemic; SLE 152700 14 .09 32 .47 37 .52 34 .50
 ENSG00000168036 CTNNB1 Medulloblastoma 155255 4 .13 18 .48 2 .09 1 .02
 ENSG00000134982 APC Medulloblastoma 155255 1 .00 38 .63 1 .00 1 .01
 ENSG00000117425 PTCH2 Medulloblastoma 155255 50 1.00 29 .65 12 .41 9 .18
 ENSG00000107882 SUFU Medulloblastoma 155255 19 .46 19 .40 13 .43 15 .30
 ENSG00000107815 PEO1 Progressive external ophthalmoplegia with mtDNA deletions; PEO 157640 29 .95 50 1.00 35 .92 26 .63
 ENSG00000151729 SLC25A4 Progressive external ophthalmoplegia with mtDNA deletions; PEO 157640 4 .38 19 .50 40 .82 29 .74
 ENSG00000140521 POLG Progressive external ophthalmoplegia with mtDNA deletions; PEO 157640 38 .93 3 .01 25 .67 36 .79
 ENSG00000136827 TOR1A Myoclonic dystonia 159900 23 .39 24 .34 30 .59 26 .63
 ENSG00000127990 SGCE Myoclonic dystonia 159900 49 .87 35 .61 28 .56 26 .62
 ENSG00000149295 DRD2 Myoclonic dystonia 159900 22 .48 14 .25 13 .24 11 .19
 ENSG00000143632 ACTA1 Nemaline myopathy 1, autosomal dominant; NEM1 161800 45 .89 20 .67 8 .14 2 .06
 ENSG00000143549 TPM3 Nemaline myopathy 1, autosomal dominant; NEM1 161800 5 .19 24 .60 5 .19 2 .05
 ENSG00000198467 TPM2 Nemaline myopathy 1, autosomal dominant; NEM1 161800 27 .34 24 .47 1 .02 16 .41
 ENSG00000179142 CYP11B2 IgA nephropathy 161950 50 1.00 7 .17 33 .88 30 .72
 ENSG00000135744 AGT IgA nephropathy 161950 24 .55 8 .11 40 .96 16 .41
 ENSG00000159640 ACE IgA nephropathy 161950 29 .59 29 .55 17 .77 9 .23
 ENSG00000007908 SELE IgA nephropathy 161950 50 1.00 9 .10 50 1.00 1 .04
 ENSG00000133256 PDE6B Night blindness, congenital stationary; CSNB3 163500 50 1.00 44 .95 7 .05 27 .38
 ENSG00000114349 GNAT1 Night blindness, congenital stationary; CSNB3 163500 42 .69 8 .14 36 .37 16 .21
 ENSG00000163914 RHO Night blindness, congenital stationary; CSNB3 163500 50 1.00 40 .85 48 .86 34 .68
 ENSG00000108576 SLC6A4 Obsessive-compulsive disorder 1; OCD1 164230 3 .02 10 .30 48 .94 26 .68
 ENSG00000102468 HTR2A Obsessive-compulsive disorder 1; OCD1 164230 40 .41 26 .64 44 .81 34 .73
 ENSG00000176697 BDNF Obsessive-compulsive disorder 1; OCD1 164230 50 1.00 30 .58 23 .25 48 .95
 ENSG00000004948 CALCR Osteoporosis, involutional 166710 50 1.00 17 .28 32 .54 20 .26
 ENSG00000136244 IL6 Osteoporosis, involutional 166710 7 .10 15 .26 27 .52 25 .48
 ENSG00000162337 LRP5 Osteoporosis, involutional 166710 13 .11 8 .15 11 .17 3 .02
 ENSG00000108821 COL1A1 Osteoporosis, involutional 166710 2 .02 3 .02 1 .00 15 .14
 ENSG00000111424 VDR Osteoporosis, involutional 166710 32 .38 19 .47 30 .47 14 .13
 ENSG00000145335 SNCA Parkinson disease; PD 168600 11 .20 20 .23 22 .59 1 .00
 ENSG00000154277 UCHL1 Parkinson disease; PD 168600 9 .11 33 .57 12 .25 2 .02
 ENSG00000185345 PARK2 Parkinson disease; PD 168600 23 .52 34 .42 16 .54 1 .01
 ENSG00000064692 SNCAIP Parkinson disease; PD 168600 48 .79 50 1.00 41 .88 1 .00
 ENSG00000081248 CACNA1S Hypokalemic periodic paralysis; HOKPP 170400 50 1.00 36 .82 45 .95 2 .05
 ENSG00000175538 KCNE3 Hypokalemic periodic paralysis; HOKPP 170400 50 1.00 7 .14 1 .17 2 .11
 ENSG00000007314 SCN4A Hypokalemic periodic paralysis; HOKPP 170400 37 .74 13 .40 19 .67 8 .38
 ENSG00000165731 RET Pheochromocytoma 171300 44 .70 12 .26 20 .38 17 .52
 ENSG00000117118 SDHB Pheochromocytoma 171300 35 .76 30 .68 10 .23 16 .39
 ENSG00000196712 NF1 Pheochromocytoma 171300 27 .68 48 .95 36 .74 11 .26
 ENSG00000183765 CHEK2 Prostate cancer 176807 6 .08 20 .24 39 .75 38 .58
 ENSG00000085117 CD82 Prostate cancer 176807 11 .09 50 1.00 17 .32 20 .29
 ENSG00000067082 KLF6 Prostate cancer 176807 22 .21 39 .63 11 .17 12 .11
 ENSG00000133216 EPHB2 Prostate cancer 176807 26 .30 16 .16 45 .92 26 .38
 ENSG00000135828 RNASEL Prostate cancer 176807 50 1.00 14 .14 34 .56 37 .60
 ENSG00000038945 MSR1 Prostate cancer 176807 50 1.00 10 .08 12 .10 50 .96
 ENSG00000171862 PTEN_HUMAN Prostate cancer 176807 3 .02 28 .23 14 .22 23 .20
 ENSG00000006744 RNZ2_HUMAN Prostate cancer 176807 9 .10 3 .03 11 .11 35 .47
 ENSG00000002822 MAD1L1 Prostate cancer 176807 47 .60 27 .37 25 .42 21 .28
 ENSG00000159339 PADI4 Rheumatoid arthritis 180300 50 1.00 37 .64 21 .22 39 .84
 ENSG00000168593 NFKBIL1 Rheumatoid arthritis 180300 50 1.00 44 .79 13 .37 37 .77
 ENSG00000159216 RUNX1 Rheumatoid arthritis 180300 30 .32 18 .21 33 .54 49 .95
 ENSG00000134242 PTPN22 Rheumatoid arthritis 180300 27 .27 38 .64 38 .77 10 .17
 ENSG00000197208 SLC22A4 Rheumatoid arthritis 180300 24 .20 19 .28 21 .25 2 .03
 ENSG00000138293 NCOA4 Thyroid carcinoma, papillary 188550 13 .09 41 .97 21 .37 49 .99
 ENSG00000108946 PRKAR1A Thyroid carcinoma, papillary 188550 2 .01 46 .96 21 .38 17 .25
 ENSG00000198400 NTRK1 Thyroid carcinoma, papillary 188550 50 1.00 31 .50 27 .30 22 .28
 ENSG00000114354 TFG Thyroid carcinoma, papillary 188550 42 .53 18 .37 10 .16 22 .32
 ENSG00000047410 TPR Thyroid carcinoma, papillary 188550 12 .13 4 .10 5 .03 22 .35
 ENSG00000129991 TNNI3 Cardiomyopathy, familial hypertrophic; CMH 192600 50 1.00 21 .36 39 .67 17 .17
 ENSG00000160808 MYL3 Cardiomyopathy, familial hypertrophic; CMH 192600 44 .35 1 .00 1 .00 1 .00
 ENSG00000140416 TPM1 Cardiomyopathy, familial hypertrophic; CMH 192600 44 .41 1 .00 1 .02 2 .01
 ENSG00000155657 NP_59687.1 Cardiomyopathy, familial hypertrophic; CMH 192600 35 .23 1 .00 4 .02 13 .12
 ENSG00000092054 MYH7 Cardiomyopathy, familial hypertrophic; CMH 192600 39 .23 1 .00 24 .37 48 .79
 ENSG00000111245 MYL2 Cardiomyopathy, familial hypertrophic; CMH 192600 49 .46 1 .00 1 .00 3 .04
 ENSG00000118194 TNNT2 Cardiomyopathy, familial hypertrophic; CMH 192600 15 .05 2 .01 46 .63 2 .01
 ENSG00000134571 MYBPC3 Cardiomyopathy, familial hypertrophic; CMH 192600 50 1.00 1 .00 4 .03 7 .05
 ENSG00000101306 MYLK2 Cardiomyopathy, familial hypertrophic; CMH 192600 50 1.00 41 .51 36 .58 11 .14
 ENSG00000183785 PEX26 Adrenoleukodystrophy, autosomal neonatal form 202370 46 .69 1 .00 1 .01 1 .01
 ENSG00000162928 PEX13 Adrenoleukodystrophy, autosomal neonatal form 202370 46 .79 1 .00 38 .66 1 .02
 ENSG00000127980 PEX1 Adrenoleukodystrophy, autosomal neonatal form 202370 40 .41 7 .20 29 .53 1 .01
 ENSG00000157911 PEX10 Adrenoleukodystrophy, autosomal neonatal form 202370 25 .11 1 .00 44 .63 1 .01
 ENSG00000139197 PEX5 Adrenoleukodystrophy, autosomal neonatal form 202370 31 .38 1 .00 1 .01 1 .00
 ENSG00000047579 DTNBP1 Hermansky-Pudlak syndrome; HPS 203300 25 .16 15 .04 7 .07 42 .81
 ENSG00000107521 HPS1 Hermansky-Pudlak syndrome; HPS 203300 37 .35 3 .03 32 .54 11 .12
 ENSG00000132842 AP3B1 Hermansky-Pudlak syndrome; HPS 203300 27 .24 50 1.00 19 .21 7 .12
 ENSG00000110756 HPS5 Hermansky-Pudlak syndrome; HPS 203300 49 .62 50 1.00 45 .70 50 .93
 ENSG00000100099 HPS4 Hermansky-Pudlak syndrome; HPS 203300 11 .11 36 .63 46 .86 8 .08
 ENSG00000163755 HPS3 Hermansky-Pudlak syndrome; HPS 203300 50 1.00 50 1.00 50 1.00 50 1.00
 ENSG00000092200 RPGRIP1 Leber congenital amaurosis, type I; LCA1 204000 45 .52 1 .00 4 .03 8 .07
 ENSG00000132518 GUCY2D Leber congenital amaurosis, type I; LCA1 204000 50 1.00 45 .63 27 .28 11 .13
 ENSG00000116745 RPE65 Leber congenital amaurosis, type I; LCA1 204000 45 .48 35 .47 23 .23 21 .29
 ENSG00000139988 RDH12_HUMAN Leber congenital amaurosis, type I; LCA1 204000 37 .56 41 .51 5 .04 26 .28
 ENSG00000134376 CRB1 Leber congenital amaurosis, type I; LCA1 204000 50 1.00 10 .09 18 .15 2 .00
 ENSG00000105392 CRX Leber congenital amaurosis, type I; LCA1 204000 42 .36 21 .15 16 .11 29 .32
 ENSG00000112041 TULP1 Leber congenital amaurosis, type I; LCA1 204000 7 .03 2 .00 29 .35 29 .48
 ENSG00000165731 RET Autonomic control, congenital failure of 209880 11 .09 41 .67 12 .19 23 .34
 ENSG00000124205 EDN3 Autonomic control, congenital failure of 209880 50 1.00 9 .16 4 .10 43 .81
 ENSG00000109132 PHOX2B Autonomic control, congenital failure of 209880 50 .87 14 .18 1 .01 1 .02
 ENSG00000176697 BDNF Autonomic control, congenital failure of 209880 50 1.00 34 .44 49 .92 37 .61
 ENSG00000168621 GDNF Autonomic control, congenital failure of 209880 50 1.00 10 .10 34 .68 3 .04
 ENSG00000165533 TTC8 Bardet-Biedl syndrome; BBS 209900 50 1.00 5 .05 1 .01 1 .00
 ENSG00000174483 DPP3 Bardet-Biedl syndrome; BBS 209900 38 .37 50 .94 13 .26 11 .19
 ENSG00000138686 BBS7_HUMAN Bardet-Biedl syndrome; BBS 209900 35 .29 1 .00 21 .29 16 .29
 ENSG00000125124 BBS2 Bardet-Biedl syndrome; BBS 209900 50 1.00 1 .00 1 .00 1 .00
 ENSG00000125863 MKKS Bardet-Biedl syndrome; BBS 209900 46 .53 33 .36 43 .78 32 .52
 ENSG00000140463 BBS4 Bardet-Biedl syndrome; BBS 209900 19 .13 9 .05 2 .01 1 .01
 ENSG00000113966 ARL6 Bardet-Biedl syndrome; BBS 209900 50 1.00 32 .56 33 .45 21 .29
 ENSG00000163093 BBS5 Bardet-Biedl syndrome; BBS 209900 2 .02 50 1.00 10 .23 13 .19
 ENSG00000133111 RFXAP Bare lymphocyte syndrome, type II 209920 29 .46 20 .36 20 .48 1 .00
 ENSG00000179583 MHC2TA Bare lymphocyte syndrome, type II 209920 50 1.00 5 .06 5 .05 1 .00
 ENSG00000064490 RFXANK Bare lymphocyte syndrome, type II 209920 20 .30 24 .27 18 .28 1 .00
 ENSG00000143390 RFX5 Bare lymphocyte syndrome, type II 209920 30 .57 26 .34 21 .29 1 .00
 ENSG00000159128 IFNGR2 Atypical mycobacteriosis, familial 209950 6 .07 5 .01 3 .01 2 .00
 ENSG00000096996 IL12RB1 Atypical mycobacteriosis, familial 209950 50 1.00 5 .03 18 .12 1 .00
 ENSG00000027697 IFNGR1 Atypical mycobacteriosis, familial 209950 2 .03 1 .00 3 .02 1 .00
 ENSG00000113302 IL12B Atypical mycobacteriosis, familial 209950 50 1.00 5 .04 38 .38 1 .00
 ENSG00000115415 STAT1 Atypical mycobacteriosis, familial 209950 26 .19 23 .32 6 .03 15 .16
 ENSG00000073734 ABCB11 Cholestasis, progressive familial intrahepatic 1; PFIC1 211600 50 1.00 37 .78 40 .88 19 .33
 ENSG00000005471 ABCB4 Cholestasis, progressive familial intrahepatic 1; PFIC1 211600 50 1.00 32 .69 14 .36 23 .43
 ENSG00000081923 ATP8B1 Cholestasis, progressive familial intrahepatic 1; PFIC1 211600 24 .63 5 .14 33 .71 28 .74
 ENSG00000099377 HSD3B7 Cholestasis, progressive familial intrahepatic 1; PFIC1 211600 17 .11 1 .02 1 .02 11 .29
 ENSG00000133703 RASK_HUMAN Lung cancer 211980 40 .39 44 .64 5 .04 19 .24
 ENSG00000157764 BRAF Lung cancer 211980 6 .02 30 .53 2 .02 1 .01
 ENSG00000141510 TP53 Lung cancer 211980 1 .00 13 .22 39 .66 49 .97
 ENSG00000146648 EGFR Lung cancer 211980 25 .26 13 .27 5 .09 15 .24
 ENSG00000139197 PEX5 Zellweger syndrome; ZS 214100 7 .03 6 .03 1 .00 1 .00
 ENSG00000142655 PEX14 Zellweger syndrome; ZS 214100 14 .06 9 .10 3 .01 2 .00
 ENSG00000127980 PEX1 Zellweger syndrome; ZS 214100 14 .06 1 .03 1 .00 3 .01
 ENSG00000124587 PEX6 Zellweger syndrome; ZS 214100 3 .01 2 .03 2 .01 1 .02
 ENSG00000108733 PEX12 Zellweger syndrome; ZS 214100 19 .12 18 .31 42 .62 1 .00
 ENSG00000164751 PXMP3 Zellweger syndrome; ZS 214100 24 .14 35 .57 34 .41 1 .00
 ENSG00000183785 PEX26 Zellweger syndrome; ZS 214100 9 .04 2 .03 4 .04 1 .00
 ENSG00000034693 PEX3 Zellweger syndrome; ZS 214100 1 .00 1 .00 14 .11 1 .00
 ENSG00000172660 TAF15 Chondrosarcoma 215300 33 .34 44 .72 45 .66 9 .13
 ENSG00000182197 EXT1 Chondrosarcoma 215300 15 .05 7 .10 30 .52 2 .01
 ENSG00000151348 EXT2 Chondrosarcoma 215300 2 .01 8 .12 17 .31 1 .02
 ENSG00000182944 EWSR1 Chondrosarcoma 215300 27 .23 41 .74 10 .18 15 .33
 ENSG00000134183 GNAT2 Achromatopsia 2; ACHM2 216900 42 .71 25 .53 34 .79 36 .79
 ENSG00000144191 CNGA3 Achromatopsia 2; ACHM2 216900 44 .57 5 .16 2 .03 35 .87
 ENSG00000170289 CNGB3 Achromatopsia 2; ACHM2 216900 50 1.00 21 .67 16 .33 11 .33
 ENSG00000065618 COHA1_HUMAN Epidermolysis bullosa junctionalis, disentis type 226650 16 .41 34 .41 12 .31 12 .19
 ENSG00000132470 ITGB4 Epidermolysis bullosa junctionalis, disentis type 226650 50 1.00 38 .78 9 .16 32 .59
 ENSG00000196878 LAMB3 Epidermolysis bullosa junctionalis, disentis type 226650 50 1.00 3 .04 1 .04 9 .15
 ENSG00000053747 LAMA3 Epidermolysis bullosa junctionalis, disentis type 226650 31 .65 20 .37 41 .77 15 .21
 ENSG00000165281 FANCG Fanconi anemia; FA 227650 12 .03 36 .34 33 .49 1 .00
 ENSG00000144554 FANCD2 Fanconi anemia; FA 227650 50 1.00 2 .01 1 .01 1 .00
 ENSG00000183161 FANCF Fanconi anemia; FA 227650 19 .11 2 .01 1 .02 1 .00
 ENSG00000158169 FANCC Fanconi anemia; FA 227650 21 .10 2 .02 22 .23 1 .00
 ENSG00000115392 FANCL Fanconi anemia; FA 227650 40 .45 26 .36 19 .31 1 .00
 ENSG00000112039 FANCE Fanconi anemia; FA 227650 2 .01 3 .01 15 .25 1 .00
 ENSG00000105379 ETFB Glutaricaciduria IIA 231680 1 .01 1 .06 1 .00 1 .00
 ENSG00000140374 ETFA Glutaricaciduria IIA 231680 2 .01 3 .06 1 .00 1 .00
 ENSG00000171503 ETFDH Glutaricaciduria IIA 231680 1 .00 10 .19 1 .00 1 .00
 ENSG00000188690 UROS Hydrops fetalis, idiopathic 236750 26 .20 50 .96 8 .11 28 .54
 ENSG00000169919 GUSB Hydrops fetalis, idiopathic 236750 28 .41 21 .54 46 .91 42 .92
 ENSG00000177628 GBA Hydrops fetalis, idiopathic 236750 46 .67 40 .93 46 .88 27 .64
 ENSG00000188536 HBA1 Hydrops fetalis, idiopathic 236750 12 .06 43 .93 16 .46 6 .14
 ENSG00000179477 ALOX12B Ichthyosiform erythroderma, congenital, nonbullous, 1; NCIE1 242100 50 1.00 21 .41 6 .14 4 .06
 ENSG00000011198 ABHD5 Ichthyosiform erythroderma, congenital, nonbullous, 1; NCIE1 242100 7 .10 11 .19 28 .51 31 .62
 ENSG00000092295 TGM1 Ichthyosiform erythroderma, congenital, nonbullous, 1; NCIE1 242100 12 .23 2 .04 4 .04 36 .60
 ENSG00000122735 DNAI1 Kartagener syndrome 244400 12 .12 50 1.00 6 .14 16 .53
 ENSG00000039139 DNAH5 Kartagener syndrome 244400 50 1.00 1 .01 1 .04 1 .04
 ENSG00000105877 DNAH11 Kartagener syndrome 244400 50 1.00 1 .02 5 .07 1 .04
 ENSG00000112964 GHR Laron syndrome, type II 245590 50 1.00 11 .15 30 .66 2 .01
 ENSG00000189162 GH1 Laron syndrome, type II 245590 50 1.00 4 .03 3 .06 3 .03
 ENSG00000173757 STAT5B Laron syndrome, type II 245590 17 .45 31 .63 39 .88 12 .21
 ENSG00000137992 DBT Maple syrup urine disease, type IA 248600 29 .45 21 .27 41 .54 2 .00
 ENSG00000091140 DLD Maple syrup urine disease, type IA 248600 22 .19 38 .52 3 .04 1 .01
 ENSG00000142046 BCKDHA Maple syrup urine disease, type IA 248600 4 .05 10 .13 1 .02 1 .00
 ENSG00000083123 BCKDHB Maple syrup urine disease, type IA 248600 31 .40 5 .03 30 .44 2 .00
 ENSG00000167792 NDUFV1 Complex I, mitochondrial respiratory chain, deficiency of 252010 37 .34 1 .00 3 .01 3 .00
 ENSG00000115286 NDUFS7 Complex I, mitochondrial respiratory chain, deficiency of 252010 42 .62 1 .01 4 .01 3 .01
 ENSG00000164258 NDUFS4 Complex I, mitochondrial respiratory chain, deficiency of 252010 27 .35 1 .01 1 .00 1 .00
 ENSG00000023228 NDUFS1 Complex I, mitochondrial respiratory chain, deficiency of 252010 42 .61 1 .00 1 .00 1 .00
 ENSG00000158864 NDUFS2 Complex I, mitochondrial respiratory chain, deficiency of 252010 12 .06 1 .00 1 .00 1 .00
 ENSG00000110092 CCND1 Myeloma, multiple 254500 2 .02 50 .92 44 .67 44 .85
 ENSG00000130076 IGHG3 Myeloma, multiple 254500 41 .68 10 .20 44 .84 35 .70
 ENSG00000068078 FGFR3 Myeloma, multiple 254500 21 .29 3 .03 15 .34 4 .03
 ENSG00000137265 IRF4 Myeloma, multiple 254500 30 .41 19 .29 22 .40 15 .21
 ENSG00000115286 NDUFS7 Leigh syndrome; LS 256000 9 .02 2 .03 1 .00 1 .00
 ENSG00000074582 BCS1L Leigh syndrome; LS 256000 12 .07 23 .32 3 .03 9 .05
 ENSG00000073578 SDHA Leigh syndrome; LS 256000 9 .04 32 .53 8 .08 6 .06
 ENSG00000110536 NDUFS3 Leigh syndrome; LS 256000 8 .04 1 .02 1 .00 1 .01
 ENSG00000091140 DLD Leigh syndrome; LS 256000 39 .23 46 .79 25 .29 26 .38
 ENSG00000110717 NDUFS8 Leigh syndrome; LS 256000 5 .00 5 .03 3 .00 1 .00
 ENSG00000006071 ABCC8 Nesidioblastosis of pancreas 256450 37 .48 50 .99 44 .89 36 .81
 ENSG00000106633 GCK Nesidioblastosis of pancreas 256450 46 .71 19 .26 2 .10 30 .63
 ENSG00000148672 GLUD1 Nesidioblastosis of pancreas 256450 13 .07 18 .30 7 .23 29 .50
 ENSG00000141655 TNFRSF11A Osteogenic sarcoma 259500 50 1.00 2 .12 29 .67 4 .11
 ENSG00000139687 RB1 Osteogenic sarcoma 259500 23 .25 31 .58 39 .62 24 .50
 ENSG00000183765 CHEK2 Osteogenic sarcoma 259500 49 .92 44 .90 46 .88 25 .57
 ENSG00000081087 OSTM1 Osteopetrosis, autosomal recessive 259700 7 .31 50 1.00 12 .35 26 .66
 ENSG00000103249 CLCN7 Osteopetrosis, autosomal recessive 259700 40 .71 30 .75 33 .79 30 .68
 ENSG00000110719 TCIRG1 Osteopetrosis, autosomal recessive 259700 46 .82 30 .70 6 .08 4 .27
 ENSG00000133703 RASK_HUMAN Pancreatic carcinoma 260350 50 .62 24 .19 7 .06 17 .25
 ENSG00000141510 TP53 Pancreatic carcinoma 260350 12 .12 30 .31 21 .29 18 .20
 ENSG00000145050 ARMET Pancreatic carcinoma 260350 38 .43 50 1.00 41 .41 41 .58
 ENSG00000147889 CDKN2A Pancreatic carcinoma 260350 50 1.00 20 .25 48 .51 45 .55
 ENSG00000141646 SMAD4 Pancreatic carcinoma 260350 1 .01 34 .34 28 .26 38 .65
 ENSG00000139618 BRCA2 Pancreatic carcinoma 260350 45 .75 33 .40 42 .50 15 .18
 ENSG00000144191 CNGA3 Achromatopsia 3; ACHM3 262300 42 .58 9 .20 1 .02 34 .85
 ENSG00000134183 GNAT2 Achromatopsia 3; ACHM3 262300 36 .68 25 .54 36 .79 38 .83
 ENSG00000170289 CNGB3 Achromatopsia 3; ACHM3 262300 50 1.00 21 .68 15 .33 10 .33
 ENSG00000107187 LHX3 Pituitary dwarfism III 262600 30 .40 41 .86 31 .46 41 .90
 ENSG00000163666 HESX1 Pituitary dwarfism III 262600 50 1.00 36 .79 46 .91 6 .02
 ENSG00000175325 PROP1 Pituitary dwarfism III 262600 50 1.00 37 .78 37 .76 2 .01
 ENSG00000111319 SCNN1A Pseudohypoaldosteronism, type I, autosomal recessive; PHA1 264350 25 .69 1 .00 2 .05 2 .10
 ENSG00000168447 SCNN1B Pseudohypoaldosteronism, type I, autosomal recessive; PHA1 264350 18 .31 1 .00 6 .07 5 .07
 ENSG00000151623 NR3C2 Pseudohypoaldosteronism, type I, autosomal recessive; PHA1 264350 39 .72 30 .69 40 .97 24 .58
 ENSG00000168878 SFTPB Pulmonary alveolar proteinosis 265120 50 1.00 2 .01 18 .60 7 .31
 ENSG00000100368 CSF2RB Pulmonary alveolar proteinosis 265120 50 1.00 33 .64 46 .99 50 .99
 ENSG00000168484 SFTPC Pulmonary alveolar proteinosis 265120 50 1.00 2 .00 1 .01 15 .43
 ENSG00000164751 PXMP3 Refsum disease, infantile form 266510 47 .87 5 .15 27 .65 35 .90
 ENSG00000127980 PEX1 Refsum disease, infantile form 266510 3 .05 37 .78 16 .50 1 .00
 ENSG00000183785 PEX26 Refsum disease, infantile form 266510 29 .58 1 .02 3 .01 1 .00
 ENSG00000197375 SLC22A5 Inflammatory bowel disease 1; IBD1 266600 6 .05 47 .96 24 .58 48 .97
 ENSG00000151208 DLG5 Inflammatory bowel disease 1; IBD1 266600 38 .74 20 .37 9 .27 25 .55
 ENSG00000167207 CARD15 Inflammatory bowel disease 1; IBD1 266600 50 1.00 45 .93 7 .24 22 .62
 ENSG00000085563 ABCB1 Inflammatory bowel disease 1; IBD1 266600 50 1.00 14 .24 42 .89 36 .79
 ENSG00000092929 UNC13D Reticulosis, familial histiocytic 267700 50 1.00 49 .97 50 1.00 5 .16
 ENSG00000166349 RAG1 Reticulosis, familial histiocytic 267700 51 1.00 12 .29 50 .90 39 .92
 ENSG00000180644 PRF1 Reticulosis, familial histiocytic 267700 21 .24 44 .95 8 .12 36 .56
 ENSG00000135903 PAX3 Rhabdomyosarcoma 2; RMS2 268220 19 .39 12 .31 23 .45 36 .86
 ENSG00000150907 FOXO1A Rhabdomyosarcoma 2; RMS2 268220 48 .84 39 .83 10 .25 35 .97
 ENSG00000009709 PAX7 Rhabdomyosarcoma 2; RMS2 268220 3 .06 19 .41 9 .30 18 .40
 ENSG00000108576 SLC6A4 Sudden infant death syndrome 272120 33 .67 23 .51 12 .41 29 .71
 ENSG00000183873 SCN5A Sudden infant death syndrome 272120 40 .75 5 .06 4 .04 39 .85
 ENSG00000053918 KCNQ1 Sudden infant death syndrome 272120 50 1.00 42 .89 46 .65 39 .64
 ENSG00000163599 CTLA4 Graves disease 275000 50 1.00 2 .03 50 1.00 25 .81
 ENSG00000145321 GC Graves disease 275000 5 .08 21 .51 25 .43 2 .04
 ENSG00000111424 VDR Graves disease 275000 8 .07 38 .87 28 .56 15 .37
 ENSG00000134982 APC Turcot syndrome 276300 2 .00 41 .72 40 .68 37 .86
 ENSG00000076242 MLH1 Turcot syndrome 276300 32 .71 2 .06 12 .40 27 .61
 ENSG00000122512 PMS2 Turcot syndrome 276300 4 .07 2 .07 2 .03 2 .07
 ENSG00000100146 SOX10 Waardenburg-Shah syndrome 277580 34 .57 3 .06 46 .85 27 .73
 ENSG00000124205 EDN3 Waardenburg-Shah syndrome 277580 50 1.00 46 .97 23 .56 2 .04
 ENSG00000136160 EDNRB Waardenburg-Shah syndrome 277580 50 1.00 6 .09 1 .01 5 .13
 ENSG00000112357 PEX7 Rhizomelic chondrodysplasia punctata, type 3; RCDP3 600121 18 .29 40 .79 27 .73 43 .97
 ENSG00000116906 GNPAT Rhizomelic chondrodysplasia punctata, type 3; RCDP3 600121 26 .35 20 .44 40 .76 4 .04
 ENSG00000018510 AGPS Rhizomelic chondrodysplasia punctata, type 3; RCDP3 600121 13 .23 1 .05 40 .75 2 .01
 ENSG00000170175 CHRNB1 Myasthenic syndrome, slow-channel congenital; SCCMS 601462 5 .06 35 .69 2 .09 47 .95
 ENSG00000135902 CHRND Myasthenic syndrome, slow-channel congenital; SCCMS 601462 15 .11 2 .00 1 .00 7 .14
 ENSG00000138435 CHRNA1 Myasthenic syndrome, slow-channel congenital; SCCMS 601462 50 1.00 1 .00 1 .00 2 .02
 ENSG00000175426 PCSK1 Obesity 601665 48 .62 47 .84 28 .31 20 .27
 ENSG00000115138 POMC Obesity 601665 24 .14 17 .22 35 .30 6 .03
 ENSG00000116678 LEPR Obesity 601665 1 .00 45 .86 14 .15 2 .00
 ENSG00000166603 MC4R Obesity 601665 50 1.00 18 .22 41 .65 4 .02
 ENSG00000174483 DPP3 Obesity 601665 18 .11 23 .37 1 .02 3 .01
 ENSG00000174697 LEP Obesity 601665 50 1.00 26 .30 37 .42 4 .01
 ENSG00000130203 APOE Obesity 601665 34 .24 11 .24 14 .16 38 .33
 ENSG00000142156 COL6A1 Ossification of the posterior longitudinal ligament of spine; OPLL 602475 50 1.00 24 .48 13 .32 15 .17
 ENSG00000112112 COL11A2 Ossification of the posterior longitudinal ligament of spine; OPLL 602475 32 .57 5 .18 5 .21 1 .06
 ENSG00000197594 ENPP1 Ossification of the posterior longitudinal ligament of spine; OPLL 602475 50 1.00 24 .43 41 .71 20 .42
 ENSG00000115211 EIF2B4 Leukoencephalopathy with vanishing white matter; VWM 603896 2 .00 1 .00 1 .00 1 .00
 ENSG00000070785 EIF2B3 Leukoencephalopathy with vanishing white matter; VWM 603896 1 .00 1 .00 2 .00 1 .00
 ENSG00000111361 EIF2B1 Leukoencephalopathy with vanishing white matter; VWM 603896 1 .00 1 .00 1 .00 1 .00
 ENSG00000119718 EIF2B2 Leukoencephalopathy with vanishing white matter; VWM 603896 1 .00 1 .00 1 .00 1 .00
 ENSG00000145191 EIF2B5 Leukoencephalopathy with vanishing white matter; VWM 603896 1 .00 2 .00 1 .00 1 .00
 ENSG00000138061 CYP1B1 Peters anomaly 604229 21 .35 33 .48 9 .11 23 .31
 ENSG00000054598 FOXC1 Peters anomaly 604229 15 .21 27 .36 47 .79 50 .99
 ENSG00000164093 PITX2 Peters anomaly 604229 50 1.00 24 .37 2 .03 41 .80
 ENSG00000007372 PAX6 Peters anomaly 604229 40 .77 18 .32 28 .51 15 .23
 ENSG00000144285 SCN1A Generalized epilepsy with febrile seizures plus; GEFS+ 604233 33 .55 2 .02 4 .01 8 .04
 ENSG00000113327 GABRG2 Generalized epilepsy with febrile seizures plus; GEFS+ 604233 40 .63 4 .20 25 .49 23 .64
 ENSG00000105711 SCN1B Generalized epilepsy with febrile seizures plus; GEFS+ 604233 11 .12 1 .02 1 .01 31 .70
 ENSG00000157764 BRAF Lymphoma, non-Hodgkin, familial 605027 41 .53 1 .03 10 .15 13 .30
 ENSG00000003400 CASP10 Lymphoma, non-Hodgkin, familial 605027 15 .16 6 .06 4 .03 27 .32
 ENSG00000149311 ATM Lymphoma, non-Hodgkin, familial 605027 35 .30 36 .37 35 .50 32 .61
 ENSG00000085999 RAD54L Lymphoma, non-Hodgkin, familial 605027 37 .35 24 .41 25 .29 1 .00
 ENSG00000143294 PRCC Renal cell carcinoma, papillary 605074 38 .75 50 1.00 31 .74 29 .59
 ENSG00000068323 TFE3 Renal cell carcinoma, papillary 605074 8 .08 19 .57 43 .82 2 .02
 ENSG00000105976 MET Renal cell carcinoma, papillary 605074 31 .46 4 .36 14 .37 36 .74
 ENSG00000102245 TNFL5_HUMAN Immunodeficiency with hyper-IgM, type 2 605258 50 1.00 32 .62 43 .85 3 .11
 ENSG00000101017 CD40 Immunodeficiency with hyper-IgM, type 2 605258 3 .08 6 .17 21 .29 16 .37
 ENSG00000111732 AICDA Immunodeficiency with hyper-IgM, type 2 605258 50 1.00 29 .46 33 .68 18 .50
 ENSG00000139515 IPF1 Maturity-onset diabetes of the young; MODY 606391 50 1.00 40 .66 32 .54 1 .00
 ENSG00000135100 TCF1 Maturity-onset diabetes of the young; MODY 606391 50 1.00 33 .43 26 .56 1 .01
 ENSG00000101076 HNF4A Maturity-onset diabetes of the young; MODY 606391 9 .08 40 .64 20 .18 8 .08
 ENSG00000106633 GCK Maturity-onset diabetes of the young; MODY 606391 28 .30 47 .72 25 .36 24 .25
 ENSG00000162992 NEUROD1 Maturity-onset diabetes of the young; MODY 606391 9 .07 3 .03 40 .57 4 .01
 ENSG00000102245 TNFL5_HUMAN Immunodeficiency with hyper-IgM, type 3 606843 50 1.00 31 .60 45 .88 3 .12
 ENSG00000101017 CD40 Immunodeficiency with hyper-IgM, type 3 606843 4 .09 6 .16 20 .31 17 .38
 ENSG00000111732 AICDA Immunodeficiency with hyper-IgM, type 3 606843 50 1.00 29 .51 30 .66 16 .50
 ENSG00000022355 GABRA1 Myoclonic epilepsy, juvenile; JME 606904 36 .30 26 .25 37 .49 32 .51
 ENSG00000096093 EFHC1 Myoclonic epilepsy, juvenile; JME 606904 50 1.00 50 1.00 50 1.00 6 .07
 ENSG00000182389 CACNB4 Myoclonic epilepsy, juvenile; JME 606904 45 .77 37 .50 47 .67 23 .44
 ENSG00000114859 CLCN2 Myoclonic epilepsy, juvenile; JME 606904 50 1.00 11 .18 41 .47 8 .14
 ENSG00000179295 PTPN11 Juvenile myelomonocytic leukemia 607785 32 .41 8 .08 36 .65 5 .12
 ENSG00000196712 NF1 Juvenile myelomonocytic leukemia 607785 44 .64 3 .02 2 .05 1 .00
 ENSG00000133703 RASK_HUMAN Juvenile myelomonocytic leukemia 607785 36 .39 2 .04 4 .01 5 .04
 ENSG00000168638 NRAS Juvenile myelomonocytic leukemia 607785 4 .01 14 .25 3 .01 5 .06
 ENSG00000197499 HLA-A Mycobacterium tuberculosis, susceptibility to infection by 607948 49 .91 38 .70 42 .93 34 .53
 ENSG00000165471 MBL2 Mycobacterium tuberculosis, susceptibility to infection by 607948 50 1.00 32 .88 49 .95 13 .34
 ENSG00000111424 VDR Mycobacterium tuberculosis, susceptibility to infection by 607948 35 .82 31 .69 28 .57 14 .37
 ENSG00000108556 CHRNE Myasthenic syndrome, congenital, fast-channel 608930 50 1.00 36 .69 44 .61 1 .00
 ENSG00000138435 CHRNA1 Myasthenic syndrome, congenital, fast-channel 608930 50 1.00 1 .00 1 .00 1 .00
 ENSG00000135902 CHRND Myasthenic syndrome, congenital, fast-channel 608930 12 .12 1 .00 1 .00 1 .00
100 Genes:
 ENSG00000091513 TF Alzheimer disease; AD 104300 70 .29 80 .69 86 .74 46 .39
 ENSG00000175899 A2M Alzheimer disease; AD 104300 72 .37 69 .69 94 .92 2 .02
 ENSG00000143801 PSEN2 Alzheimer disease; AD 104300 31 .08 10 .08 57 .45 92 .86
 ENSG00000123384 LRP1 Alzheimer disease; AD 104300 100 1.00 44 .31 39 .32 33 .30
 ENSG00000142192 APP Alzheimer disease; AD 104300 71 .38 72 .67 76 .60 30 .20
 ENSG00000130203 APOE Alzheimer disease; AD 104300 34 .08 76 .63 68 .56 5 .02
 ENSG00000010704 HFE Alzheimer disease; AD 104300 52 .12 34 .70 88 .61 1 .00
 ENSG00000080815 PSEN1 Alzheimer disease; AD 104300 26 .07 11 .06 92 .78 98 .98
 ENSG00000101439 CST3 Amyloidosis VI 105150 10 .22 96 .98 96 .98 59 .71
 ENSG00000165029 ABCA1 Amyloidosis VI 105150 100 1.00 80 .93 70 .81 3 .07
 ENSG00000136156 ITM2B Amyloidosis VI 105150 46 .62 6 .16 18 .35 92 .99
 ENSG00000171560 FGA Amyloidosis, familial visceral 105200 100 1.00 88 .98 87 .85 71 .81
 ENSG00000090382 LYZ Amyloidosis, familial visceral 105200 66 .73 34 .26 76 .80 72 .80
 ENSG00000118137 APOA1 Amyloidosis, familial visceral 105200 14 .19 59 .54 28 .30 58 .79
 ENSG00000124164 VAPB Amyotrophic lateral sclerosis 1; ALS1 105400 12 .05 22 .15 61 .58 23 .17
 ENSG00000003393 ALS2 Amyotrophic lateral sclerosis 1; ALS1 105400 100 1.00 38 .32 92 .83 68 .60
 ENSG00000142168 SOD1 Amyotrophic lateral sclerosis 1; ALS1 105400 32 .10 2 .00 26 .11 92 .93
 ENSG00000100285 NEFH Amyotrophic lateral sclerosis 1; ALS1 105400 62 .36 19 .12 75 .52 84 .76
 ENSG00000135406 PRPH Amyotrophic lateral sclerosis 1; ALS1 105400 63 .25 100 1.00 22 .15 75 .60
 ENSG00000112112 COL11A2 Stickler syndrome, type I; STL1 108300 83 .89 26 .29 13 .20 9 .16
 ENSG00000139219 COL2A1 Stickler syndrome, type I; STL1 108300 100 1.00 35 .36 35 .38 64 .69
 ENSG00000060718 COL11A1 Stickler syndrome, type I; STL1 108300 100 1.00 26 .29 14 .19 10 .16
 ENSG00000139687 RB1 Bladder cancer 109800 37 .48 78 .89 53 .59 54 .71
 ENSG00000068078 FGFR3 Bladder cancer 109800 48 .54 22 .38 66 .76 39 .62
 ENSG00000174775 HRAS Bladder cancer 109800 39 .48 17 .17 88 .82 95 1.00
 ENSG00000139618 BRCA2 Breast cancer 114480 62 .17 23 .06 16 .02 21 .04
 ENSG00000138376 BARD1 Breast cancer 114480 31 .06 48 .22 6 .01 1 .00
 ENSG00000124151 NCOA3 Breast cancer 114480 74 .31 14 .04 21 .08 26 .05
 ENSG00000121879 PIK3CA Breast cancer 114480 37 .07 75 .50 1 .00 78 .40
 ENSG00000012048 BRCA1 Breast cancer 114480 2 .00 26 .14 29 .10 9 .02
 ENSG00000170836 PPM1D Breast cancer 114480 70 .31 14 .04 73 .47 47 .19
 ENSG00000141510 TP53 Breast cancer 114480 57 .15 43 .20 3 .00 17 .04
 ENSG00000023287 RB1CC1 Breast cancer 114480 59 .15 65 .40 99 .84 78 .40
 ENSG00000183765 CHEK2 Breast cancer 114480 10 .02 8 .02 9 .04 24 .07
 ENSG00000169083 AR Breast cancer 114480 100 1.00 69 .38 72 .33 72 .38
 ENSG00000105976 MET Hepatocellular carcinoma 114550 79 .85 41 .48 17 .31 4 .03
 ENSG00000168036 CTNNB1 Hepatocellular carcinoma 114550 42 .52 90 .98 32 .53 19 .23
 ENSG00000141510 TP53 Hepatocellular carcinoma 114550 72 .77 52 .70 87 .92 96 1.00
 ENSG00000138109 CYP2C9 Coumarin resistance 122700 61 .62 88 .93 28 .42 41 .44
 ENSG00000167397 VKOR1_HUMAN Coumarin resistance 122700 39 .15 63 .73 89 .79 10 .10
 ENSG00000198470 CYP2A6 Coumarin resistance 122700 95 .98 27 .24 50 .70 62 .72
 ENSG00000101981 F9 Coumarin resistance 122700 100 1.00 36 .30 44 .70 29 .39
 ENSG00000162992 NEUROD1 Diabetes mellitus, non–insulin-dependent; NIDDM 125853 6 .00 16 .04 8 .02 73 .60
 ENSG00000121653 MAPK8IP1 Diabetes mellitus, non–insulin-dependent; NIDDM 125853 82 .32 40 .30 38 .22 13 .05
 ENSG00000163581 SLC2A2 Diabetes mellitus, non–insulin-dependent; NIDDM 125853 86 .41 16 .03 5 .01 50 .25
 ENSG00000181856 SLC2A4 Diabetes mellitus, non–insulin-dependent; NIDDM 125853 63 .15 11 .03 9 .02 3 .00
 ENSG00000105221 AKT2 Diabetes mellitus, non–insulin-dependent; NIDDM 125853 15 .01 80 .71 47 .30 38 .11
 ENSG00000101076 HNF4A Diabetes mellitus, non–insulin-dependent; NIDDM 125853 9 .01 77 .52 78 .58 57 .22
 ENSG00000142330 CAPN10 Diabetes mellitus, non–insulin-dependent; NIDDM 125853 100 1.00 44 .32 20 .09 22 .07
 ENSG00000135100 TCF1 Diabetes mellitus, non–insulin-dependent; NIDDM 125853 100 1.00 80 .61 81 .61 56 .37
 ENSG00000104918 RETN Diabetes mellitus, non–insulin-dependent; NIDDM 125853 95 .46 82 .61 100 1.00 15 .06
 ENSG00000171867 PRNP Dementia, Lewy body; DLB 127750 23 .24 100 1.00 37 .44 87 .95
 ENSG00000145335 SNCA Dementia, Lewy body; DLB 127750 8 .11 90 .98 50 .69 73 .90
 ENSG00000130203 APOE Dementia, Lewy body; DLB 127750 86 .93 18 .40 87 .90 90 .94
 ENSG00000070182 SPTB Elliptocytosis, Rhesus-unlinked type 130600 100 1.00 7 .09 37 .63 1 .00
 ENSG00000163554 SPTA1 Elliptocytosis, Rhesus-unlinked type 130600 59 .45 12 .17 23 .26 2 .02
 ENSG00000004939 SLC4A1 Elliptocytosis, Rhesus-unlinked type 130600 39 .37 25 .36 18 .16 9 .09
 ENSG00000186847 KRT14 Epidermolysis bullosa of hands and feet 131800 100 1.00 13 .04 1 .01 13 .01
 ENSG00000186081 KRT5 Epidermolysis bullosa of hands and feet 131800 100 1.00 8 .04 8 .03 2 .00
 ENSG00000132470 ITGB4 Epidermolysis bullosa of hands and feet 131800 100 1.00 60 .56 47 .40 25 .21
 ENSG00000114270 COL7A1 Epidermolysis bullosa of hands and feet 131800 21 .10 14 .10 39 .26 63 .59
 ENSG00000127870 RNF6 Esophageal cancer 133239 27 .21 69 .53 14 .10 8 .04
 ENSG00000134982 APC Esophageal cancer 133239 4 .01 92 .91 11 .11 14 .08
 ENSG00000147889 CDKN2A Esophageal cancer 133239 100 1.00 75 .57 36 .31 23 .17
 ENSG00000008226 DLEC1 Esophageal cancer 133239 100 1.00 21 .16 3 .03 4 .03
 ENSG00000061337 LZTS1 Esophageal cancer 133239 100 1.00 84 .78 37 .29 17 .09
 ENSG00000141510 TP53 Esophageal cancer 133239 67 .56 69 .61 77 .81 1 .02
 ENSG00000187323 DCC Esophageal cancer 133239 100 1.00 35 .23 22 .20 3 .03
 ENSG00000186153 NP_570606.1 Esophageal cancer 133239 32 .19 69 .57 35 .29 1 .00
 ENSG00000140522 RLBP1 Fundus albipunctatus 136880 93 .77 65 .72 91 .90 3 .02
 ENSG00000112619 RDS Fundus albipunctatus 136880 100 1.00 37 .44 83 .82 69 .71
 ENSG00000135437 RDH5 Fundus albipunctatus 136880 100 1.00 55 .55 39 .47 3 .03
 ENSG00000130203 APOE Fundus albipunctatus 136880 96 .91 7 .02 93 .92 6 .05
 ENSG00000063169 GLTSCR1 Glioma of brain, familial 137800 64 .36 100 1.00 100 1.00 100 1.00
 ENSG00000111087 GLI1_HUMAN Glioma of brain, familial 137800 17 .07 31 .17 6 .03 25 .14
 ENSG00000108231 LGI1 Glioma of brain, familial 137800 45 .17 100 1.00 100 1.00 100 1.00
 ENSG00000147889 CDKN2A Glioma of brain, familial 137800 100 1.00 97 .96 27 .20 62 .45
 ENSG00000146648 EGFR Glioma of brain, familial 137800 2 .00 3 .00 50 .42 32 .19
 ENSG00000132170 PPARG Glioma of brain, familial 137800 50 .22 65 .64 22 .14 97 .90
 ENSG00000117298 ECE1 Hirschsprung disease 142623 38 .18 87 .72 47 .37 56 .50
 ENSG00000136160 EDNRB Hirschsprung disease 142623 100 1.00 44 .34 64 .46 29 .14
 ENSG00000169554 ZFHX1B Hirschsprung disease 142623 9 .02 70 .54 13 .09 5 .08
 ENSG00000165731 RET Hirschsprung disease 142623 43 .21 56 .54 47 .33 38 .29
 ENSG00000124205 EDN3 Hirschsprung disease 142623 100 1.00 27 .21 41 .31 12 .10
 ENSG00000168621 GDNF Hirschsprung disease 142623 100 1.00 70 .54 39 .23 44 .47
 ENSG00000130164 LDLR Hypercholesterolemia, familial 143890 23 .22 3 .04 5 .04 8 .04
 ENSG00000055955 ITIH4 Hypercholesterolemia, familial 143890 46 .39 25 .27 50 .44 99 .99
 ENSG00000158874 APOA2 Hypercholesterolemia, familial 143890 100 1.00 13 .14 9 .08 24 .20
 ENSG00000169174 PCSK9 Hypercholesterolemia, familial 143890 11 .09 40 .44 49 .46 44 .35
 ENSG00000120915 EPHX2 Hypercholesterolemia, familial 143890 54 .31 80 .82 91 .84 26 .18
 ENSG00000084674 APOB Hypercholesterolemia, familial 143890 50 .61 1 .01 2 .05 25 .23
 ENSG00000111664 GNB3 Hypertension, essential 145500 2 .00 35 .24 55 .26 29 .13
 ENSG00000124212 PTGIS Hypertension, essential 145500 68 .39 64 .56 69 .52 36 .28
 ENSG00000087274 NP_789771.1 Hypertension, essential 145500 28 .06 75 .58 65 .55 95 .90
 ENSG00000106258 CYP3A5 Hypertension, essential 145500 74 .46 35 .29 81 .63 47 .32
 ENSG00000028137 TNFRSF1B Hypertension, essential 145500 36 .10 47 .33 71 .54 23 .12
 ENSG00000144891 AGTR1 Hypertension, essential 145500 40 .15 2 .01 28 .16 65 .46
 ENSG00000135744 AGT Hypertension, essential 145500 43 .19 19 .13 48 .29 58 .47
 ENSG00000105227 PRX Hypertrophic neuropathy of Dejerine-Sottas 145900 100 1.00 1 .01 4 .03 59 .64
 ENSG00000109099 PMP22 Hypertrophic neuropathy of Dejerine-Sottas 145900 92 .92 46 .41 72 .71 8 .08
 ENSG00000122877 EGR2 Hypertrophic neuropathy of Dejerine-Sottas 145900 26 .20 63 .75 93 .97 48 .58
 ENSG00000158887 MPZ Hypertrophic neuropathy of Dejerine-Sottas 145900 100 1.00 7 .07 3 .04 1 .02
 ENSG00000169083 AR Hypospadias 146450 100 1.00 87 .97 65 .66 51 .58
 ENSG00000101871 MID1 Hypospadias 146450 100 1.00 17 .08 64 .58 7 .04
 ENSG00000049319 SRD5A2 Hypospadias 146450 32 .39 13 .09 84 .83 41 .46
 ENSG00000005471 ABCB4 Cholestasis, intrahepatic, of pregnancy; ICP 147480 100 1.00 31 .43 64 .53 63 .66
 ENSG00000073734 ABCB11 Cholestasis, intrahepatic, of pregnancy; ICP 147480 100 1.00 94 .97 91 .95 37 .41
 ENSG00000081923 ATP8B1 Cholestasis, intrahepatic, of pregnancy; ICP 147480 8 .03 18 .26 68 .59 72 .78
 ENSG00000167768 KRT1 Keratosis palmoplantaris striata I 148700 79 .85 42 .46 95 1.00 4 .01
 ENSG00000134760 DSG1 Keratosis palmoplantaris striata I 148700 100 1.00 13 .27 30 .37 4 .01
 ENSG00000096696 DSP Keratosis palmoplantaris striata I 148700 34 .23 2 .03 1 .01 1 .01
 ENSG00000111275 ALDH2 Leiomyoma, uterine 150699 83 .78 33 .37 10 .10 37 .45
 ENSG00000143196 DPT Leiomyoma, uterine 150699 71 .48 100 1.00 100 1.00 12 .05
 ENSG00000182185 RAD51L1 Leiomyoma, uterine 150699 100 1.00 81 .88 11 .11 59 .64
 ENSG00000164919 COX6C Leiomyoma, uterine 150699 28 .11 30 .24 13 .08 19 .24
 ENSG00000087237 CETP Longevity 152430 47 .28 65 .71 32 .26 49 .55
 ENSG00000108599 AKAP10 Longevity 152430 100 .97 27 .22 19 .13 26 .29
 ENSG00000136869 TLR4 Longevity 152430 29 .15 15 .17 29 .23 42 .53
 ENSG00000005421 PON1 Longevity 152430 100 1.00 7 .10 11 .04 45 .42
 ENSG00000126594 DNASE1 Lupus erythematosus, systemic; SLE 152700 87 .74 55 .52 88 .95 77 .81
 ENSG00000163599 CTLA4 Lupus erythematosus, systemic; SLE 152700 100 1.00 61 .65 100 1.00 51 .59
 ENSG00000134242 PTPN22 Lupus erythematosus, systemic; SLE 152700 72 .56 44 .41 38 .33 39 .27
 ENSG00000143226 FCGR2A Lupus erythematosus, systemic; SLE 152700 22 .11 11 .07 23 .11 59 .44
 ENSG00000168036 CTNNB1 Medulloblastoma 155255 46 .42 13 .11 4 .05 5 .09
 ENSG00000134982 APC Medulloblastoma 155255 3 .01 87 .93 1 .01 2 .02
 ENSG00000117425 PTCH2 Medulloblastoma 155255 100 1.00 71 .70 50 .54 54 .50
 ENSG00000107882 SUFU Medulloblastoma 155255 43 .32 64 .72 29 .36 59 .63
 ENSG00000107815 PEO1 Progressive external ophthalmoplegia with mtDNA deletions; PEO 157640 11 .10 101 1.00 91 1.00 73 .88
 ENSG00000151729 SLC25A4 Progressive external ophthalmoplegia with mtDNA deletions; PEO 157640 7 .02 71 .79 78 .82 36 .62
 ENSG00000140521 POLG Progressive external ophthalmoplegia with mtDNA deletions; PEO 157640 77 .92 9 .05 36 .56 90 .97
 ENSG00000136827 TOR1A Myoclonic dystonia 159900 25 .21 61 .72 19 .22 67 .87
 ENSG00000127990 SGCE Myoclonic dystonia 159900 26 .35 21 .18 73 .86 69 .86
 ENSG00000149295 DRD2 Myoclonic dystonia 159900 18 .27 40 .34 49 .42 1 .01
 ENSG00000143632 ACTA1 Nemaline myopathy 1, autosomal dominant; NEM1 161800 72 .83 59 .68 18 .25 12 .15
 ENSG00000143549 TPM3 Nemaline myopathy 1, autosomal dominant; NEM1 161800 11 .06 55 .75 22 .38 13 .17
 ENSG00000198467 TPM2 Nemaline myopathy 1, autosomal dominant; NEM1 161800 67 .61 4 .03 4 .04 11 .15
 ENSG00000179142 CYP11B2 IgA nephropathy 161950 100 1.00 23 .32 95 1.00 38 .53
 ENSG00000135744 AGT IgA nephropathy 161950 84 .89 19 .18 27 .67 67 .80
 ENSG00000159640 ACE IgA nephropathy 161950 2 .00 61 .68 75 .91 50 .65
 ENSG00000007908 SELE IgA nephropathy 161950 100 1.00 24 .18 20 .24 1 .01
 ENSG00000133256 PDE6B Night blindness, congenital stationary; CSNB3 163500 100 1.00 74 .90 9 .09 69 .76
 ENSG00000114349 GNAT1 Night blindness, congenital stationary; CSNB3 163500 97 .96 30 .27 34 .26 57 .60
 ENSG00000163914 RHO Night blindness, congenital stationary; CSNB3 163500 100 1.00 82 .86 79 .83 83 .94
 ENSG00000108576 SLC6A4 Obsessive-compulsive disorder 1; OCD1 164230 12 .10 9 .08 15 .26 88 .97
 ENSG00000102468 HTR2A Obsessive-compulsive disorder 1; OCD1 164230 84 .73 51 .68 89 .96 45 .55
 ENSG00000176697 BDNF Obsessive-compulsive disorder 1; OCD1 164230 100 1.00 20 .26 28 .22 46 .67
 ENSG00000004948 CALCR Osteoporosis, involutional 166710 100 1.00 14 .11 60 .62 55 .53
 ENSG00000136244 IL6 Osteoporosis, involutional 166710 19 .10 60 .62 74 .79 21 .17
 ENSG00000162337 LRP5 Osteoporosis, involutional 166710 30 .11 13 .10 47 .45 15 .09
 ENSG00000108821 COL1A1 Osteoporosis, involutional 166710 12 .07 4 .01 1 .01 73 .50
 ENSG00000111424 VDR Osteoporosis, involutional 166710 93 .72 87 .89 36 .31 60 .52
 ENSG00000145335 SNCA Parkinson disease; PD 168600 51 .37 42 .40 47 .56 1 .00
 ENSG00000154277 UCHL1 Parkinson disease; PD 168600 37 .24 82 .83 31 .33 4 .06
 ENSG00000185345 PARK2 Parkinson disease; PD 168600 92 .88 38 .30 16 .12 1 .01
 ENSG00000064692 SNCAIP Parkinson disease; PD 168600 25 .08 100 1.00 81 .63 1 .00
 ENSG00000081248 CACNA1S Hypokalemic periodic paralysis; HOKPP 170400 100 1.00 70 .82 59 .76 5 .12
 ENSG00000175538 KCNE3 Hypokalemic periodic paralysis; HOKPP 170400 100 1.00 33 .27 14 .26 7 .06
 ENSG00000007314 SCN4A Hypokalemic periodic paralysis; HOKPP 170400 47 .57 51 .58 33 .72 54 .77
 ENSG00000165731 RET Pheochromocytoma 171300 91 .92 54 .54 12 .07 64 .88
 ENSG00000117118 SDHB Pheochromocytoma 171300 59 .70 51 .64 44 .51 50 .70
 ENSG00000196712 NF1 Pheochromocytoma 171300 88 .92 84 .93 60 .56 53 .62
 ENSG00000183765 CHEK2 Prostate cancer 176807 25 .21 52 .48 31 .41 14 .08
 ENSG00000085117 CD82 Prostate cancer 176807 22 .09 100 1.00 57 .61 76 .78
 ENSG00000067082 KLF6 Prostate cancer 176807 53 .28 94 .88 78 .69 27 .22
 ENSG00000133216 EPHB2 Prostate cancer 176807 66 .47 35 .27 100 1.00 53 .43
 ENSG00000135828 RNASEL Prostate cancer 176807 100 1.00 60 .35 66 .66 25 .15
 ENSG00000038945 MSR1 Prostate cancer 176807 100 1.00 24 .16 38 .28 94 .83
 ENSG00000171862 PTEN_HUMAN Prostate cancer 176807 6 .01 20 .07 6 .02 73 .57
 ENSG00000006744 RNZ2_HUMAN Prostate cancer 176807 58 .36 21 .10 66 .63 60 .53
 ENSG00000002822 MAD1L1 Prostate cancer 176807 76 .61 59 .55 47 .51 89 .78
 ENSG00000159339 PADI4 Rheumatoid arthritis 180300 100 1.00 77 .92 33 .29 55 .58
 ENSG00000168593 NFKBIL1 Rheumatoid arthritis 180300 100 1.00 58 .41 64 .60 72 .74
 ENSG00000159216 RUNX1 Rheumatoid arthritis 180300 43 .29 80 .72 85 .85 85 .89
 ENSG00000134242 PTPN22 Rheumatoid arthritis 180300 57 .36 62 .59 89 .91 62 .57
 ENSG00000197208 SLC22A4 Rheumatoid arthritis 180300 35 .17 40 .47 52 .44 17 .14
 ENSG00000138293 NCOA4 Thyroid carcinoma, papillary 188550 7 .04 72 .91 70 .82 100 1.00
 ENSG00000108946 PRKAR1A Thyroid carcinoma, papillary 188550 7 .03 47 .45 31 .40 49 .73
 ENSG00000198400 NTRK1 Thyroid carcinoma, papillary 188550 100 1.00 38 .41 31 .29 56 .42
 ENSG00000114354 TFG Thyroid carcinoma, papillary 188550 70 .51 24 .37 27 .38 30 .30
 ENSG00000047410 TPR Thyroid carcinoma, papillary 188550 16 .06 48 .36 11 .09 21 .21
 ENSG00000129991 TNNI3 Cardiomyopathy, familial hypertrophic; CMH 192600 100 1.00 67 .63 70 .72 18 .05
 ENSG00000160808 MYL3 Cardiomyopathy, familial hypertrophic; CMH 192600 17 .02 1 .00 1 .00 1 .01
 ENSG00000140416 TPM1 Cardiomyopathy, familial hypertrophic; CMH 192600 47 .21 1 .00 5 .05 2 .01
 ENSG00000155657 NP_59687.1 Cardiomyopathy, familial hypertrophic; CMH 192600 35 .08 1 .01 12 .08 41 .29
 ENSG00000092054 MYH7 Cardiomyopathy, familial hypertrophic; CMH 192600 52 .14 5 .03 34 .23 42 .32
 ENSG00000111245 MYL2 Cardiomyopathy, familial hypertrophic; CMH 192600 94 .58 1 .00 1 .00 3 .03
 ENSG00000118194 TNNT2 Cardiomyopathy, familial hypertrophic; CMH 192600 45 .10 4 .03 93 .78 1 .00
 ENSG00000134571 MYBPC3 Cardiomyopathy, familial hypertrophic; CMH 192600 101 1.00 1 .00 7 .06 11 .14
 ENSG00000101306 MYLK2 Cardiomyopathy, familial hypertrophic; CMH 192600 100 1.00 47 .40 37 .44 42 .38
 ENSG00000183785 PEX26 Adrenoleukodystrophy, autosomal neonatal form 202370 75 .46 1 .00 5 .01 14 .06
 ENSG00000162928 PEX13 Adrenoleukodystrophy, autosomal neonatal form 202370 97 .94 1 .00 86 .67 1 .01
 ENSG00000127980 PEX1 Adrenoleukodystrophy, autosomal neonatal form 202370 91 .64 33 .37 74 .50 8 .04
 ENSG00000157911 PEX10 Adrenoleukodystrophy, autosomal neonatal form 202370 82 .46 2 .00 79 .61 10 .03
 ENSG00000139197 PEX5 Adrenoleukodystrophy, autosomal neonatal form 202370 62 .27 2 .00 1 .00 4 .01
 ENSG00000047579 DTNBP1 Hermansky-Pudlak syndrome; HPS 203300 78 .51 21 .14 44 .27 93 .89
 ENSG00000107521 HPS1 Hermansky-Pudlak syndrome; HPS 203300 87 .83 8 .07 25 .21 29 .24
 ENSG00000132842 AP3B1 Hermansky-Pudlak syndrome; HPS 203300 33 .14 100 1.00 52 .41 34 .42
 ENSG00000110756 HPS5 Hermansky-Pudlak syndrome; HPS 203300 96 .94 100 1.00 44 .43 50 .46
 ENSG00000100099 HPS4 Hermansky-Pudlak syndrome; HPS 203300 67 .50 84 .83 87 .83 13 .14
 ENSG00000163755 HPS3 Hermansky-Pudlak syndrome; HPS 203300 100 1.00 100 1.00 100 1.00 100 1.00
 ENSG00000092200 RPGRIP1 Leber congenital amaurosis, type I; LCA1 204000 30 .15 1 .02 4 .03 16 .07
 ENSG00000132518 GUCY2D Leber congenital amaurosis, type I; LCA1 204000 100 1.00 37 .24 49 .26 71 .68
 ENSG00000116745 RPE65 Leber congenital amaurosis, type I; LCA1 204000 45 .15 35 .23 46 .27 64 .56
 ENSG00000139988 RDH12_HUMAN Leber congenital amaurosis, type I; LCA1 204000 40 .20 31 .26 14 .08 73 .51
 ENSG00000134376 CRB1 Leber congenital amaurosis, type I; LCA1 204000 101 1.00 5 .01 39 .19 1 .00
 ENSG00000105392 CRX Leber congenital amaurosis, type I; LCA1 204000 56 .21 53 .36 7 .05 22 .09
 ENSG00000112041 TULP1 Leber congenital amaurosis, type I; LCA1 204000 13 .04 5 .02 50 .40 59 .49
 ENSG00000165731 RET Autonomic control, congenital failure of 209880 38 .13 81 .84 42 .32 12 .12
 ENSG00000124205 EDN3 Autonomic control, congenital failure of 209880 100 1.00 23 .30 20 .17 71 .77
 ENSG00000109132 PHOX2B Autonomic control, congenital failure of 209880 79 .45 69 .60 3 .02 3 .02
 ENSG00000176697 BDNF Autonomic control, congenital failure of 209880 100 1.00 86 .85 84 .71 35 .39
 ENSG00000168621 GDNF Autonomic control, congenital failure of 209880 100 1.00 30 .18 80 .56 13 .12
 ENSG00000165533 TTC8 Bardet-Biedl syndrome; BBS 209900 100 1.00 15 .10 12 .05 9 .02
 ENSG00000174483 DPP3 Bardet-Biedl syndrome; BBS 209900 93 .69 37 .19 51 .34 31 .22
 ENSG00000138686 BBS7_HUMAN Bardet-Biedl syndrome; BBS 209900 33 .12 1 .01 73 .52 86 .82
 ENSG00000125124 BBS2 Bardet-Biedl syndrome; BBS 209900 100 1.00 2 .01 1 .00 2 .02
 ENSG00000125863 MKKS Bardet-Biedl syndrome; BBS 209900 57 .23 80 .63 87 .67 73 .59
 ENSG00000140463 BBS4 Bardet-Biedl syndrome; BBS 209900 31 .15 23 .10 9 .05 5 .03
 ENSG00000113966 ARL6 Bardet-Biedl syndrome; BBS 209900 100 1.00 30 .21 45 .39 35 .28
 ENSG00000163093 BBS5 Bardet-Biedl syndrome; BBS 209900 12 .04 100 1.00 11 .05 14 .05
 ENSG00000133111 RFXAP Bare lymphocyte syndrome, type II 209920 9 .09 71 .77 48 .52 1 .00
 ENSG00000179583 MHC2TA Bare lymphocyte syndrome, type II 209920 100 1.00 17 .22 18 .09 1 .00
 ENSG00000064490 RFXANK Bare lymphocyte syndrome, type II 209920 36 .25 76 .71 46 .26 1 .00
 ENSG00000143390 RFX5 Bare lymphocyte syndrome, type II 209920 73 .65 68 .75 4 .03 1 .00
 ENSG00000159128 IFNGR2 Atypical mycobacteriosis, familial 209950 3 .01 8 .05 6 .03 3 .02
 ENSG00000096996 IL12RB1 Atypical mycobacteriosis, familial 209950 100 1.00 7 .08 20 .17 6 .03
 ENSG00000027697 IFNGR1 Atypical mycobacteriosis, familial 209950 29 .18 7 .05 6 .06 2 .02
 ENSG00000113302 IL12B Atypical mycobacteriosis, familial 209950 100 1.00 9 .10 50 .44 3 .01
 ENSG00000115415 STAT1 Atypical mycobacteriosis, familial 209950 76 .63 58 .60 25 .13 49 .45
 ENSG00000073734 ABCB11 Cholestasis, progressive familial intrahepatic 1; PFIC1 211600 100 1.00 95 .97 85 .95 33 .31
 ENSG00000005471 ABCB4 Cholestasis, progressive familial intrahepatic 1; PFIC1 211600 100 1.00 51 .55 74 .68 78 .78
 ENSG00000081923 ATP8B1 Cholestasis, progressive familial intrahepatic 1; PFIC1 211600 4 .03 13 .24 84 .81 78 .82
 ENSG00000099377 HSD3B7 Cholestasis, progressive familial intrahepatic 1; PFIC1 211600 41 .14 5 .06 5 .03 36 .31
 ENSG00000133703 RASK_HUMAN Lung cancer 211980 49 .40 63 .71 12 .16 15 .14
 ENSG00000157764 BRAF Lung cancer 211980 22 .08 15 .17 3 .04 3 .02
 ENSG00000141510 TP53 Lung cancer 211980 2 .02 58 .61 43 .60 100 1.00
 ENSG00000146648 EGFR Lung cancer 211980 65 .60 43 .42 17 .18 10 .13
 ENSG00000139197 PEX5 Zellweger syndrome; ZS 214100 21 .02 18 .04 2 .01 1 .00
 ENSG00000142655 PEX14 Zellweger syndrome; ZS 214100 21 .04 5 .01 2 .01 2 .00
 ENSG00000127980 PEX1 Zellweger syndrome; ZS 214100 53 .18 10 .09 2 .01 4 .03
 ENSG00000124587 PEX6 Zellweger syndrome; ZS 214100 39 .12 6 .07 1 .02 11 .11
 ENSG00000108733 PEX12 Zellweger syndrome; ZS 214100 81 .44 54 .46 57 .40 1 .00
 ENSG00000164751 PXMP3 Zellweger syndrome; ZS 214100 53 .19 75 .59 86 .67 1 .00
 ENSG00000183785 PEX26 Zellweger syndrome; ZS 214100 48 .18 11 .06 12 .06 5 .03
 ENSG00000034693 PEX3 Zellweger syndrome; ZS 214100 1 .00 1 .00 41 .19 1 .00
 ENSG00000172660 TAF15 Chondrosarcoma 215300 80 .75 72 .74 80 .69 35 .35
 ENSG00000182197 EXT1 Chondrosarcoma 215300 35 .17 16 .17 89 .86 2 .03
 ENSG00000151348 EXT2 Chondrosarcoma 215300 4 .02 10 .15 72 .66 4 .07
 ENSG00000182944 EWSR1 Chondrosarcoma 215300 16 .06 91 .95 14 .12 15 .17
 ENSG00000134183 GNAT2 Achromatopsia 2; ACHM2 216900 50 .55 68 .86 90 .98 88 .97
 ENSG00000144191 CNGA3 Achromatopsia 2; ACHM2 216900 91 .90 34 .32 6 .06 74 .83
 ENSG00000170289 CNGB3 Achromatopsia 2; ACHM2 216900 100 1.00 53 .76 20 .28 38 .58
 ENSG00000065618 COHA1_HUMAN Epidermolysis bullosa junctionalis, disentis type 226650 8 .08 53 .48 36 .36 47 .38
 ENSG00000132470 ITGB4 Epidermolysis bullosa junctionalis, disentis type 226650 100 1.00 52 .58 25 .27 85 .93
 ENSG00000196878 LAMB3 Epidermolysis bullosa junctionalis, disentis type 226650 100 1.00 13 .11 4 .07 36 .41
 ENSG00000053747 LAMA3 Epidermolysis bullosa junctionalis, disentis type 226650 95 .94 50 .50 60 .62 18 .17
 ENSG00000165281 FANCG Fanconi anemia; FA 227650 59 .21 73 .57 29 .13 1 .00
 ENSG00000144554 FANCD2 Fanconi anemia; FA 227650 100 1.00 17 .09 19 .10 1 .00
 ENSG00000183161 FANCF Fanconi anemia; FA 227650 25 .09 14 .10 21 .12 1 .00
 ENSG00000158169 FANCC Fanconi anemia; FA 227650 42 .24 18 .09 43 .33 1 .00
 ENSG00000115392 FANCL Fanconi anemia; FA 227650 80 .69 70 .56 9 .06 4 .01
 ENSG00000112039 FANCE Fanconi anemia; FA 227650 1 .00 20 .09 21 .16 1 .00
 ENSG00000105379 ETFB Glutaricaciduria IIA 231680 1 .01 5 .09 1 .00 1 .00
 ENSG00000140374 ETFA Glutaricaciduria IIA 231680 2 .00 1 .07 1 .01 1 .00
 ENSG00000171503 ETFDH Glutaricaciduria IIA 231680 1 .00 22 .33 1 .00 1 .00
 ENSG00000188690 UROS Hydrops fetalis, idiopathic 236750 29 .17 91 .94 2 .03 28 .25
 ENSG00000169919 GUSB Hydrops fetalis, idiopathic 236750 91 .84 75 .85 43 .36 81 .93
 ENSG00000177628 GBA Hydrops fetalis, idiopathic 236750 81 .79 74 .89 58 .64 52 .65
 ENSG00000188536 HBA1 Hydrops fetalis, idiopathic 236750 20 .12 82 .96 54 .50 42 .37
 ENSG00000179477 ALOX12B Ichthyosiform erythroderma, congenital, nonbullous, 1; NCIE1 242100 100 1.00 52 .74 17 .17 14 .17
 ENSG00000011198 ABHD5 Ichthyosiform erythroderma, congenital, nonbullous, 1; NCIE1 242100 31 .22 3 .04 1 .01 2 .02
 ENSG00000092295 TGM1 Ichthyosiform erythroderma, congenital, nonbullous, 1; NCIE1 242100 48 .55 4 .05 4 .06 85 .90
 ENSG00000122735 DNAI1 Kartagener syndrome 244400 3 .03 100 1.00 13 .22 24 .22
 ENSG00000039139 DNAH5 Kartagener syndrome 244400 100 1.00 2 .03 1 .01 14 .11
 ENSG00000105877 DNAH11 Kartagener syndrome 244400 100 1.00 4 .03 2 .02 5 .08
 ENSG00000112964 GHR Laron syndrome, type II 245590 100 1.00 42 .35 13 .12 4 .04
 ENSG00000189162 GH1 Laron syndrome, type II 245590 100 1.00 6 .05 12 .12 6 .10
 ENSG00000173757 STAT5B Laron syndrome, type II 245590 32 .36 74 .91 78 .93 33 .37
 ENSG00000137992 DBT Maple syrup urine disease, type IA 248600 87 .81 54 .47 76 .68 3 .01
 ENSG00000091140 DLD Maple syrup urine disease, type IA 248600 33 .18 78 .83 42 .27 1 .02
 ENSG00000142046 BCKDHA Maple syrup urine disease, type IA 248600 4 .03 23 .27 8 .09 1 .00
 ENSG00000083123 BCKDHB Maple syrup urine disease, type IA 248600 53 .40 9 .06 63 .49 1 .00
 ENSG00000167792 NDUFV1 Complex I, mitochondrial respiratory chain, deficiency of 252010 65 .40 6 .03 5 .01 7 .02
 ENSG00000115286 NDUFS7 Complex I, mitochondrial respiratory chain, deficiency of 252010 63 .35 2 .01 12 .04 9 .05
 ENSG00000164258 NDUFS4 Complex I, mitochondrial respiratory chain, deficiency of 252010 68 .56 1 .01 1 .01 1 .00
 ENSG00000023228 NDUFS1 Complex I, mitochondrial respiratory chain, deficiency of 252010 74 .53 6 .01 1 .00 2 .00
 ENSG00000158864 NDUFS2 Complex I, mitochondrial respiratory chain, deficiency of 252010 37 .20 5 .01 2 .00 1 .00
 ENSG00000110092 CCND1 Myeloma, multiple 254500 2 .00 86 .83 93 .95 24 .22
 ENSG00000130076 IGHG3 Myeloma, multiple 254500 18 .13 38 .44 90 .91 94 .97
 ENSG00000068078 FGFR3 Myeloma, multiple 254500 65 .66 2 .04 61 .62 22 .18
 ENSG00000137265 IRF4 Myeloma, multiple 254500 54 .44 53 .66 46 .37 47 .48
 ENSG00000115286 NDUFS7 Leigh syndrome; LS 256000 19 .02 2 .01 1 .00 1 .00
 ENSG00000074582 BCS1L Leigh syndrome; LS 256000 20 .05 60 .52 36 .27 53 .41
 ENSG00000073578 SDHA Leigh syndrome; LS 256000 5 .01 17 .11 47 .39 26 .16
 ENSG00000110536 NDUFS3 Leigh syndrome; LS 256000 6 .01 2 .01 1 .01 1 .02
 ENSG00000091140 DLD Leigh syndrome; LS 256000 96 .65 4 .04 65 .49 36 .31
 ENSG00000110717 NDUFS8 Leigh syndrome; LS 256000 4 .01 2 .00 2 .01 2 .01
 ENSG00000006071 ABCC8 Nesidioblastosis of pancreas 256450 86 .84 75 .95 59 .84 86 .97
 ENSG00000106633 GCK Nesidioblastosis of pancreas 256450 93 .89 34 .39 31 .28 62 .77
 ENSG00000148672 GLUD1 Nesidioblastosis of pancreas 256450 35 .16 7 .09 36 .58 66 .73
 ENSG00000141655 TNFRSF11A Osteogenic sarcoma 259500 100 1.00 17 .18 20 .25 12 .26
 ENSG00000139687 RB1 Osteogenic sarcoma 259500 56 .50 82 .91 53 .52 21 .24
 ENSG00000183765 CHEK2 Osteogenic sarcoma 259500 95 .94 27 .39 85 .89 72 .87
 ENSG00000081087 OSTM1 Osteopetrosis, autosomal recessive 259700 10 .16 100 1.00 36 .48 35 .46
 ENSG00000103249 CLCN7 Osteopetrosis, autosomal recessive 259700 91 .93 80 .84 70 .76 74 .92
 ENSG00000110719 TCIRG1 Osteopetrosis, autosomal recessive 259700 29 .45 37 .35 30 .29 44 .58
 ENSG00000133703 RASK_HUMAN Pancreatic carcinoma 260350 30 .11 11 .09 6 .03 16 .11
 ENSG00000141510 TP53 Pancreatic carcinoma 260350 33 .21 83 .80 36 .32 67 .61
 ENSG00000145050 ARMET Pancreatic carcinoma 260350 43 .30 100 1.00 92 .89 83 .75
 ENSG00000147889 CDKN2A Pancreatic carcinoma 260350 100 1.00 8 .09 97 .92 96 .93
 ENSG00000141646 SMAD4 Pancreatic carcinoma 260350 3 .03 85 .83 72 .73 70 .65
 ENSG00000139618 BRCA2 Pancreatic carcinoma 260350 83 .74 90 .85 84 .83 25 .15
 ENSG00000144191 CNGA3 Achromatopsia 3; ACHM3 262300 91 .89 31 .28 8 .07 72 .81
 ENSG00000134183 GNAT2 Achromatopsia 3; ACHM3 262300 52 .59 69 .85 92 .97 82 .96
 ENSG00000170289 CNGB3 Achromatopsia 3; ACHM3 262300 100 1.00 51 .70 20 .28 39 .58
 ENSG00000107187 LHX3 Pituitary dwarfism III 262600 40 .31 90 .98 73 .77 88 .99
 ENSG00000163666 HESX1 Pituitary dwarfism III 262600 101 1.00 93 .98 44 .68 6 .04
 ENSG00000175325 PROP1 Pituitary dwarfism III 262600 100 1.00 74 .81 17 .21 4 .03
 ENSG00000111319 SCNN1A Pseudohypoaldosteronism, type I, autosomal recessive; PHA1 264350 11 .17 1 .01 3 .03 7 .22
 ENSG00000168447 SCNN1B Pseudohypoaldosteronism, type I, autosomal recessive; PHA1 264350 44 .62 2 .01 1 .00 17 .17
 ENSG00000151623 NR3C2 Pseudohypoaldosteronism, type I, autosomal recessive; PHA1 264350 56 .56 86 .95 92 .97 26 .37
 ENSG00000168878 SFTPB Pulmonary alveolar proteinosis 265120 100 1.00 2 .05 11 .15 29 .59
 ENSG00000100368 CSF2RB Pulmonary alveolar proteinosis 265120 100 1.00 75 .91 67 .99 65 .89
 ENSG00000168484 SFTPC Pulmonary alveolar proteinosis 265120 100 1.00 2 .02 1 .02 56 .77
 ENSG00000164751 PXMP3 Refsum disease, infantile form 266510 62 .62 37 .32 48 .51 92 .98
 ENSG00000127980 PEX1 Refsum disease, infantile form 266510 10 .12 88 .97 67 .79 1 .00
 ENSG00000183785 PEX26 Refsum disease, infantile form 266510 44 .42 2 .03 3 .02 1 .00
 ENSG00000197375 SLC22A5 Inflammatory bowel disease 1; IBD1 266600 18 .12 58 .76 9 .06 5 .04
 ENSG00000151208 DLG5 Inflammatory bowel disease 1; IBD1 266600 99 .97 66 .61 15 .21 74 .83
 ENSG00000167207 CARD15 Inflammatory bowel disease 1; IBD1 266600 100 1.00 78 .89 35 .36 17 .15
 ENSG00000085563 ABCB1 Inflammatory bowel disease 1; IBD1 266600 100 1.00 39 .50 23 .20 15 .20
 ENSG00000092929 UNC13D Reticulosis, familial histiocytic 267700 100 1.00 16 .21 13 .19 28 .40
 ENSG00000166349 RAG1 Reticulosis, familial histiocytic 267700 100 1.00 50 .61 77 .88 97 1.00
 ENSG00000180644 PRF1 Reticulosis, familial histiocytic 267700 14 .12 100 1.00 25 .27 83 .92
 ENSG00000135903 PAX3 Rhabdomyosarcoma 2; RMS2 268220 37 .25 64 .72 59 .72 93 .99
 ENSG00000150907 FOXO1A Rhabdomyosarcoma 2; RMS2 268220 53 .31 80 .91 49 .53 78 .95
 ENSG00000009709 PAX7 Rhabdomyosarcoma 2; RMS2 268220 17 .13 78 .80 65 .57 63 .61
 ENSG00000108576 SLC6A4 Sudden infant death syndrome 272120 56 .61 29 .41 16 .27 86 .97
 ENSG00000183873 SCN5A Sudden infant death syndrome 272120 91 .95 6 .10 7 .07 11 .17
 ENSG00000053918 KCNQ1 Sudden infant death syndrome 272120 100 1.00 9 .09 5 .12 31 .41
 ENSG00000163599 CTLA4 Graves disease 275000 100 1.00 10 .11 100 1.00 79 .97
 ENSG00000145321 GC Graves disease 275000 18 .21 69 .78 58 .45 22 .14
 ENSG00000111424 VDR Graves disease 275000 35 .24 78 .93 12 .09 4 .08
 ENSG00000134982 APC Turcot syndrome 276300 2 .01 88 .96 3 .03 14 .15
 ENSG00000076242 MLH1 Turcot syndrome 276300 57 .64 1 .00 50 .72 14 .18
 ENSG00000122512 PMS2 Turcot syndrome 276300 2 .03 1 .00 7 .10 2 .04
 ENSG00000100146 SOX10 Waardenburg-Shah syndrome 277580 45 .47 28 .17 93 .98 79 .93
 ENSG00000124205 EDN3 Waardenburg-Shah syndrome 277580 100 1.00 85 .96 68 .84 4 .09
 ENSG00000136160 EDNRB Waardenburg-Shah syndrome 277580 100 1.00 1 .01 1 .01 35 .35
 ENSG00000112357 PEX7 Rhizomelic chondrodysplasia punctata, type 3; RCDP3 600121 70 .56 17 .22 59 .70 78 .90
 ENSG00000116906 GNPAT Rhizomelic chondrodysplasia punctata, type 3; RCDP3 600121 67 .72 65 .73 66 .76 9 .06
 ENSG00000018510 AGPS Rhizomelic chondrodysplasia punctata, type 3; RCDP3 600121 50 .57 6 .03 62 .69 2 .02
 ENSG00000170175 CHRNB1 Myasthenic syndrome, slow-channel congenital; SCCMS 601462 14 .13 30 .29 18 .25 67 .79
 ENSG00000135902 CHRND Myasthenic syndrome, slow-channel congenital; SCCMS 601462 45 .27 1 .00 1 .00 33 .32
 ENSG00000138435 CHRNA1 Myasthenic syndrome, slow-channel congenital; SCCMS 601462 100 1.00 1 .00 1 .00 3 .02
 ENSG00000175426 PCSK1 Obesity 601665 13 .03 42 .28 20 .12 20 .09
 ENSG00000115138 POMC Obesity 601665 72 .45 57 .55 73 .62 2 .00
 ENSG00000116678 LEPR Obesity 601665 5 .00 63 .60 28 .24 2 .00
 ENSG00000166603 MC4R Obesity 601665 100 1.00 5 .03 68 .57 4 .04
 ENSG00000174483 DPP3 Obesity 601665 14 .07 56 .49 2 .02 4 .02
 ENSG00000174697 LEP Obesity 601665 100 1.00 87 .82 92 .81 20 .12
 ENSG00000130203 APOE Obesity 601665 25 .14 15 .18 63 .40 43 .23
 ENSG00000142156 COL6A1 Ossification of the posterior longitudinal ligament of spine; OPLL 602475 100 1.00 27 .29 21 .20 43 .47
 ENSG00000112112 COL11A2 Ossification of the posterior longitudinal ligament of spine; OPLL 602475 94 .90 23 .32 15 .26 7 .17
 ENSG00000197594 ENPP1 Ossification of the posterior longitudinal ligament of spine; OPLL 602475 100 1.00 35 .40 51 .64 26 .43
 ENSG00000115211 EIF2B4 Leukoencephalopathy with vanishing white matter; VWM 603896 3 .00 1 .00 1 .00 2 .01
 ENSG00000070785 EIF2B3 Leukoencephalopathy with vanishing white matter; VWM 603896 4 .00 1 .00 2 .00 5 .01
 ENSG00000111361 EIF2B1 Leukoencephalopathy with vanishing white matter; VWM 603896 3 .00 3 .00 1 .00 2 .00
 ENSG00000119718 EIF2B2 Leukoencephalopathy with vanishing white matter; VWM 603896 4 .00 1 .00 1 .00 1 .00
 ENSG00000145191 EIF2B5 Leukoencephalopathy with vanishing white matter; VWM 603896 1 .00 2 .00 1 .00 3 .01
 ENSG00000138061 CYP1B1 Peters anomaly 604229 17 .14 40 .32 32 .38 9 .07
 ENSG00000054598 FOXC1 Peters anomaly 604229 16 .04 63 .74 94 .88 97 .97
 ENSG00000164093 PITX2 Peters anomaly 604229 100 1.00 80 .77 8 .08 68 .81
 ENSG00000007372 PAX6 Peters anomaly 604229 90 .84 64 .71 38 .40 4 .04
 ENSG00000144285 SCN1A Generalized epilepsy with febrile seizures plus; GEFS+ 604233 1 .01 9 .06 3 .01 9 .06
 ENSG00000113327 GABRG2 Generalized epilepsy with febrile seizures plus; GEFS+ 604233 8 .04 25 .36 81 .84 65 .86
 ENSG00000105711 SCN1B Generalized epilepsy with febrile seizures plus; GEFS+ 604233 28 .29 6 .05 4 .02 91 .92
 ENSG00000157764 BRAF Lymphoma, non-Hodgkin, familial 605027 80 .66 10 .09 48 .43 68 .69
 ENSG00000003400 CASP10 Lymphoma, non-Hodgkin, familial 605027 42 .29 1 .01 6 .05 3 .05
 ENSG00000149311 ATM Lymphoma, non-Hodgkin, familial 605027 59 .30 88 .84 23 .14 89 .96
 ENSG00000085999 RAD54L Lymphoma, non-Hodgkin, familial 605027 92 .69 33 .31 7 .07 4 .01
 ENSG00000143294 PRCC Renal cell carcinoma, papillary 605074 58 .65 100 1.00 14 .20 25 .37
 ENSG00000068323 TFE3 Renal cell carcinoma, papillary 605074 27 .30 58 .90 92 .98 7 .07
 ENSG00000105976 MET Renal cell carcinoma, papillary 605074 5 .02 25 .45 50 .68 82 .98
 ENSG00000102245 TNFL5_HUMAN Immunodeficiency with hyper-IgM, type 2 605258 100 1.00 6 .08 29 .32 2 .04
 ENSG00000101017 CD40 Immunodeficiency with hyper-IgM, type 2 605258 25 .24 20 .12 55 .66 4 .09
 ENSG00000111732 AICDA Immunodeficiency with hyper-IgM, type 2 605258 100 1.00 33 .26 73 .65 19 .32
 ENSG00000139515 IPF1 Maturity-onset diabetes of the young; MODY 606391 100 1.00 78 .71 86 .74 1 .00
 ENSG00000135100 TCF1 Maturity-onset diabetes of the young; MODY 606391 100 1.00 89 .81 61 .53 2 .05
 ENSG00000101076 HNF4A Maturity-onset diabetes of the young; MODY 606391 32 .14 78 .75 65 .47 19 .10
 ENSG00000106633 GCK Maturity-onset diabetes of the young; MODY 606391 75 .41 62 .50 60 .52 15 .10
 ENSG00000162992 NEUROD1 Maturity-onset diabetes of the young; MODY 606391 4 .01 29 .16 2 .00 10 .07
 ENSG00000102245 TNFL5_HUMAN Immunodeficiency with hyper-IgM, type 3 606843 100 1.00 5 .07 28 .30 4 .09
 ENSG00000101017 CD40 Immunodeficiency with hyper-IgM, type 3 606843 26 .26 10 .09 53 .63 5 .11
 ENSG00000111732 AICDA Immunodeficiency with hyper-IgM, type 3 606843 100 1.00 34 .25 72 .68 32 .34
 ENSG00000022355 GABRA1 Myoclonic epilepsy, juvenile; JME 606904 54 .31 47 .41 56 .42 9 .06
 ENSG00000096093 EFHC1 Myoclonic epilepsy, juvenile; JME 606904 100 1.00 100 1.00 100 1.00 25 .30
 ENSG00000182389 CACNB4 Myoclonic epilepsy, juvenile; JME 606904 95 .81 71 .71 43 .34 74 .76
 ENSG00000114859 CLCN2 Myoclonic epilepsy, juvenile; JME 606904 100 1.00 2 .00 17 .09 21 .17
 ENSG00000179295 PTPN11 Juvenile myelomonocytic leukemia 607785 79 .77 5 .06 60 .75 24 .35
 ENSG00000196712 NF1 Juvenile myelomonocytic leukemia 607785 42 .26 5 .06 13 .12 1 .00
 ENSG00000133703 RASK_HUMAN Juvenile myelomonocytic leukemia 607785 73 .45 9 .09 8 .05 13 .12
 ENSG00000168638 NRAS Juvenile myelomonocytic leukemia 607785 24 .05 56 .57 4 .02 19 .16
 ENSG00000197499 HLA-A Mycobacterium tuberculosis, susceptibility to infection by 607948 46 .60 27 .33 50 .76 65 .80
 ENSG00000165471 MBL2 Mycobacterium tuberculosis, susceptibility to infection by 607948 100 1.00 27 .33 11 .22 40 .61
 ENSG00000111424 VDR Mycobacterium tuberculosis, susceptibility to infection by 607948 92 .98 83 .96 83 .90 45 .68
 ENSG00000108556 CHRNE Myasthenic syndrome, congenital, fast-channel 608930 100 1.00 36 .30 93 .92 1 .00
 ENSG00000138435 CHRNA1 Myasthenic syndrome, congenital, fast-channel 608930 100 1.00 1 .00 1 .00 1 .00
 ENSG00000135902 CHRND Myasthenic syndrome, congenital, fast-channel 608930 39 .27 2 .00 2 .01 3 .01
150 Genes:
 ENSG00000091513 TF Alzheimer disease; AD 104300 121 .53 116 .81 135 .90 27 .15
 ENSG00000175899 A2M Alzheimer disease; AD 104300 98 .31 109 .71 144 .96 10 .06
 ENSG00000143801 PSEN2 Alzheimer disease; AD 104300 78 .17 32 .09 109 .61 146 .97
 ENSG00000123384 LRP1 Alzheimer disease; AD 104300 150 1.00 76 .44 72 .45 45 .25
 ENSG00000142192 APP Alzheimer disease; AD 104300 61 .27 97 .83 115 .72 51 .22
 ENSG00000130203 APOE Alzheimer disease; AD 104300 63 .15 8 .02 1 .00 25 .10
 ENSG00000010704 HFE Alzheimer disease; AD 104300 48 .11 117 .76 138 .76 2 .01
 ENSG00000080815 PSEN1 Alzheimer disease; AD 104300 60 .14 21 .07 143 .94 120 .79
 ENSG00000101439 CST3 Amyloidosis VI 105150 48 .39 141 1.00 93 .74 115 .91
 ENSG00000165029 ABCA1 Amyloidosis VI 105150 150 1.00 128 .98 29 .29 6 .10
 ENSG00000136156 ITM2B Amyloidosis VI 105150 99 .76 25 .29 49 .50 53 .53
 ENSG00000171560 FGA Amyloidosis, familial visceral 105200 151 1.00 150 1.00 136 .95 120 .93
 ENSG00000090382 LYZ Amyloidosis, familial visceral 105200 108 .89 26 .20 125 .94 55 .48
 ENSG00000118137 APOA1 Amyloidosis, familial visceral 105200 46 .30 35 .22 49 .31 110 .90
 ENSG00000124164 VAPB Amyotrophic lateral sclerosis 1; ALS1 105400 44 .10 54 .26 79 .44 78 .43
 ENSG00000003393 ALS2 Amyotrophic lateral sclerosis 1; ALS1 105400 150 1.00 77 .38 104 .58 103 .67
 ENSG00000142168 SOD1 Amyotrophic lateral sclerosis 1; ALS1 105400 60 .23 6 .02 66 .32 137 .98
 ENSG00000100285 NEFH Amyotrophic lateral sclerosis 1; ALS1 105400 109 .47 24 .13 127 .76 140 .92
 ENSG00000135406 PRPH Amyotrophic lateral sclerosis 1; ALS1 105400 107 .40 150 1.00 54 .28 129 .81
 ENSG00000112112 COL11A2 Stickler syndrome, type I; STL1 108300 142 .98 29 .36 30 .27 23 .28
 ENSG00000139219 COL2A1 Stickler syndrome, type I; STL1 108300 150 1.00 62 .52 66 .44 110 .87
 ENSG00000060718 COL11A1 Stickler syndrome, type I; STL1 108300 151 1.00 56 .41 32 .25 33 .33
 ENSG00000139687 RB1 Bladder cancer 109800 24 .16 124 .98 2 .02 23 .33
 ENSG00000068078 FGFR3 Bladder cancer 109800 34 .21 58 .58 110 .90 24 .36
 ENSG00000174775 HRAS Bladder cancer 109800 85 .66 56 .30 144 .98 143 1.00
 ENSG00000139618 BRCA2 Breast cancer 114480 117 .37 50 .14 42 .09 34 .08
 ENSG00000138376 BARD1 Breast cancer 114480 88 .19 110 .56 21 .07 7 .02
 ENSG00000124151 NCOA3 Breast cancer 114480 128 .49 40 .10 37 .10 34 .05
 ENSG00000121879 PIK3CA Breast cancer 114480 106 .28 123 .69 1 .00 65 .20
 ENSG00000012048 BRCA1 Breast cancer 114480 5 .00 86 .38 42 .10 50 .14
 ENSG00000170836 PPM1D Breast cancer 114480 110 .46 14 .02 124 .66 96 .42
 ENSG00000141510 TP53 Breast cancer 114480 28 .05 114 .56 2 .01 83 .24
 ENSG00000023287 RB1CC1 Breast cancer 114480 64 .10 86 .38 52 .14 36 .07
 ENSG00000183765 CHEK2 Breast cancer 114480 18 .02 25 .07 62 .23 66 .23
 ENSG00000169083 AR Breast cancer 114480 150 1.00 124 .72 132 .74 76 .21
 ENSG00000105976 MET Hepatocellular carcinoma 114550 135 .94 88 .70 65 .47 11 .07
 ENSG00000168036 CTNNB1 Hepatocellular carcinoma 114550 2 .02 83 .65 85 .70 36 .35
 ENSG00000141510 TP53 Hepatocellular carcinoma 114550 85 .48 111 .89 95 .69 128 .92
 ENSG00000138109 CYP2C9 Coumarin resistance 122700 125 .82 129 .93 76 .56 96 .67
 ENSG00000167397 VKOR1_HUMAN Coumarin resistance 122700 60 .24 113 .92 58 .30 36 .20
 ENSG00000198470 CYP2A6 Coumarin resistance 122700 79 .48 45 .30 124 .86 83 .60
 ENSG00000101981 F9 Coumarin resistance 122700 150 1.00 73 .44 54 .36 23 .20
 ENSG00000162992 NEUROD1 Diabetes mellitus, non–insulin-dependent; NIDDM 125853 5 .00 41 .13 17 .02 79 .26
 ENSG00000121653 MAPK8IP1 Diabetes mellitus, non–insulin-dependent; NIDDM 125853 138 .53 85 .43 4 .02 2 .01
 ENSG00000163581 SLC2A2 Diabetes mellitus, non–insulin-dependent; NIDDM 125853 130 .45 29 .06 8 .01 112 .50
 ENSG00000181856 SLC2A4 Diabetes mellitus, non–insulin-dependent; NIDDM 125853 122 .29 15 .08 17 .06 2 .00
 ENSG00000105221 AKT2 Diabetes mellitus, non–insulin-dependent; NIDDM 125853 63 .05 109 .79 72 .30 49 .16
 ENSG00000101076 HNF4A Diabetes mellitus, non–insulin-dependent; NIDDM 125853 27 .02 127 .85 141 .87 100 .48
 ENSG00000142330 CAPN10 Diabetes mellitus, non–insulin-dependent; NIDDM 125853 113 1.00 76 .46 37 .13 56 .19
 ENSG00000135100 TCF1 Diabetes mellitus, non–insulin-dependent; NIDDM 125853 150 1.00 130 .88 118 .60 126 .66
 ENSG00000104918 RETN Diabetes mellitus, non–insulin-dependent; NIDDM 125853 104 .22 105 .53 150 1.00 59 .24
 ENSG00000171867 PRNP Dementia, Lewy body; DLB 127750 57 .40 150 1.00 80 .55 137 .99
 ENSG00000145335 SNCA Dementia, Lewy body; DLB 127750 26 .17 43 .32 93 .87 128 .97
 ENSG00000130203 APOE Dementia, Lewy body; DLB 127750 145 .99 48 .59 137 .98 94 .80
 ENSG00000070182 SPTB Elliptocytosis, Rhesus-unlinked type 130600 150 1.00 7 .11 82 .82 1 .01
 ENSG00000163554 SPTA1 Elliptocytosis, Rhesus-unlinked type 130600 101 .58 26 .26 67 .45 2 .02
 ENSG00000004939 SLC4A1 Elliptocytosis, Rhesus-unlinked type 130600 97 .61 45 .50 26 .20 21 .15
 ENSG00000186847 KRT14 Epidermolysis bullosa of hands and feet 131800 150 1.00 24 .07 5 .02 19 .03
 ENSG00000186081 KRT5 Epidermolysis bullosa of hands and feet 131800 150 1.00 15 .08 14 .05 3 .00
 ENSG00000132470 ITGB4 Epidermolysis bullosa of hands and feet 131800 150 1.00 47 .23 93 .62 51 .35
 ENSG00000114270 COL7A1 Epidermolysis bullosa of hands and feet 131800 59 .25 32 .15 72 .39 64 .37
 ENSG00000127870 RNF6 Esophageal cancer 133239 48 .17 107 .68 15 .08 30 .15
 ENSG00000134982 APC Esophageal cancer 133239 2 .00 136 .97 30 .15 28 .13
 ENSG00000147889 CDKN2A Esophageal cancer 133239 150 1.00 111 .73 98 .53 61 .31
 ENSG00000008226 DLEC1 Esophageal cancer 133239 150 1.00 19 .11 11 .04 9 .05
 ENSG00000061337 LZTS1 Esophageal cancer 133239 150 1.00 141 .96 51 .26 57 .25
 ENSG00000141510 TP53 Esophageal cancer 133239 143 .85 97 .64 133 .87 14 .07
 ENSG00000187323 DCC Esophageal cancer 133239 145 1.00 51 .28 44 .30 26 .09
 ENSG00000186153 NP_570606.1 Esophageal cancer 133239 29 .11 111 .76 98 .50 2 .00
 ENSG00000140522 RLBP1 Fundus albipunctatus 136880 139 .90 43 .27 124 .86 6 .03
 ENSG00000112619 RDS Fundus albipunctatus 136880 150 1.00 78 .56 116 .81 141 .96
 ENSG00000135437 RDH5 Fundus albipunctatus 136880 150 1.00 81 .64 101 .71 5 .06
 ENSG00000130203 APOE Fundus albipunctatus 136880 147 1.00 1 .00 10 .04 23 .11
 ENSG00000063169 GLTSCR1 Glioma of brain, familial 137800 48 .16 150 1.00 151 1.00 151 1.00
 ENSG00000111087 GLI1_HUMAN Glioma of brain, familial 137800 5 .01 17 .06 16 .06 33 .15
 ENSG00000108231 LGI1 Glioma of brain, familial 137800 77 .27 150 1.00 150 1.00 150 1.00
 ENSG00000147889 CDKN2A Glioma of brain, familial 137800 150 1.00 145 .99 69 .38 77 .34
 ENSG00000146648 EGFR Glioma of brain, familial 137800 2 .00 4 .02 109 .65 27 .08
 ENSG00000132170 PPARG Glioma of brain, familial 137800 106 .45 107 .84 18 .11 110 .75
 ENSG00000117298 ECE1 Hirschsprung disease 142623 87 .32 87 .48 93 .53 117 .79
 ENSG00000136160 EDNRB Hirschsprung disease 142623 150 1.00 96 .58 121 .68 59 .28
 ENSG00000169554 ZFHX1B Hirschsprung disease 142623 1 .00 125 .87 24 .10 29 .19
 ENSG00000165731 RET Hirschsprung disease 142623 92 .34 57 .27 23 .09 82 .44
 ENSG00000124205 EDN3 Hirschsprung disease 142623 150 1.00 42 .23 32 .15 10 .08
 ENSG00000168621 GDNF Hirschsprung disease 142623 150 1.00 113 .62 85 .37 95 .70
 ENSG00000130164 LDLR Hypercholesterolemia, familial 143890 43 .15 15 .06 7 .07 4 .02
 ENSG00000055955 ITIH4 Hypercholesterolemia, familial 143890 92 .37 63 .38 83 .62 135 .94
 ENSG00000158874 APOA2 Hypercholesterolemia, familial 143890 150 1.00 65 .30 27 .17 31 .25
 ENSG00000169174 PCSK9 Hypercholesterolemia, familial 143890 49 .20 50 .28 93 .72 90 .66
 ENSG00000120915 EPHX2 Hypercholesterolemia, familial 143890 114 .47 59 .32 136 .95 91 .47
 ENSG00000084674 APOB Hypercholesterolemia, familial 143890 105 .55 7 .03 9 .05 23 .18
 ENSG00000111664 GNB3 Hypertension, essential 145500 18 .04 70 .30 17 .05 79 .33
 ENSG00000124212 PTGIS Hypertension, essential 145500 132 .66 114 .86 117 .71 69 .49
 ENSG00000087274 NP_789771.1 Hypertension, essential 145500 63 .16 119 .77 124 .80 147 .98
 ENSG00000106258 CYP3A5 Hypertension, essential 145500 90 .34 62 .43 100 .64 73 .39
 ENSG00000028137 TNFRSF1B Hypertension, essential 145500 30 .09 87 .48 133 .82 81 .42
 ENSG00000144891 AGTR1 Hypertension, essential 145500 68 .19 11 .04 32 .21 61 .33
 ENSG00000135744 AGT Hypertension, essential 145500 93 .34 31 .11 77 .42 31 .18
 ENSG00000105227 PRX Hypertrophic neuropathy of Dejerine-Sottas 145900 150 1.00 2 .03 4 .02 19 .11
 ENSG00000109099 PMP22 Hypertrophic neuropathy of Dejerine-Sottas 145900 7 .02 77 .59 112 .85 12 .19
 ENSG00000122877 EGR2 Hypertrophic neuropathy of Dejerine-Sottas 145900 79 .38 112 .93 139 .98 102 .78
 ENSG00000158887 MPZ Hypertrophic neuropathy of Dejerine-Sottas 145900 150 1.00 15 .12 13 .08 4 .05
 ENSG00000169083 AR Hypospadias 146450 150 1.00 112 .92 118 .90 25 .20
 ENSG00000101871 MID1 Hypospadias 146450 103 1.00 20 .11 110 .81 10 .06
 ENSG00000049319 SRD5A2 Hypospadias 146450 56 .48 21 .11 127 .93 70 .63
 ENSG00000005471 ABCB4 Cholestasis, intrahepatic, of pregnancy; ICP 147480 150 1.00 73 .61 106 .71 112 .74
 ENSG00000073734 ABCB11 Cholestasis, intrahepatic, of pregnancy; ICP 147480 150 1.00 139 .99 139 .98 85 .58
 ENSG00000081923 ATP8B1 Cholestasis, intrahepatic, of pregnancy; ICP 147480 23 .07 41 .39 29 .17 121 .92
 ENSG00000167768 KRT1 Keratosis palmoplantaris striata I 148700 71 .66 66 .61 67 .54 6 .05
 ENSG00000134760 DSG1 Keratosis palmoplantaris striata I 148700 145 1.00 35 .44 53 .56 6 .03
 ENSG00000096696 DSP Keratosis palmoplantaris striata I 148700 60 .28 3 .04 1 .03 2 .02
 ENSG00000111275 ALDH2 Leiomyoma, uterine 150699 87 .52 74 .53 25 .22 75 .64
 ENSG00000143196 DPT Leiomyoma, uterine 150699 70 .29 150 1.00 150 1.00 20 .11
 ENSG00000182185 RAD51L1 Leiomyoma, uterine 150699 150 1.00 127 .97 29 .19 51 .34
 ENSG00000164919 COX6C Leiomyoma, uterine 150699 59 .23 60 .41 31 .17 30 .22
 ENSG00000087237 CETP Longevity 152430 93 .49 104 .91 52 .28 60 .52
 ENSG00000108599 AKAP10 Longevity 152430 147 .99 29 .14 45 .22 63 .45
 ENSG00000136869 TLR4 Longevity 152430 5 .02 34 .27 53 .31 85 .68
 ENSG00000005421 PON1 Longevity 152430 150 1.00 26 .20 12 .04 91 .68
 ENSG00000126594 DNASE1 Lupus erythematosus, systemic; SLE 152700 143 .92 89 .67 65 .52 121 .93
 ENSG00000163599 CTLA4 Lupus erythematosus, systemic; SLE 152700 150 1.00 97 .82 150 1.00 106 .84
 ENSG00000134242 PTPN22 Lupus erythematosus, systemic; SLE 152700 67 .32 37 .25 75 .54 66 .48
 ENSG00000143226 FCGR2A Lupus erythematosus, systemic; SLE 152700 41 .18 11 .10 30 .16 123 .75
 ENSG00000168036 CTNNB1 Medulloblastoma 155255 97 .65 35 .20 15 .10 21 .21
 ENSG00000134982 APC Medulloblastoma 155255 7 .02 130 .98 2 .01 12 .06
 ENSG00000117425 PTCH2 Medulloblastoma 155255 150 1.00 116 .88 82 .57 105 .68
 ENSG00000107882 SUFU Medulloblastoma 155255 91 .50 120 .87 87 .52 63 .38
 ENSG00000107815 PEO1 Progressive external ophthalmoplegia with mtDNA deletions; PEO 157640 19 .16 150 1.00 79 .73 69 .66
 ENSG00000151729 SLC25A4 Progressive external ophthalmoplegia with mtDNA deletions; PEO 157640 11 .03 111 .95 65 .52 96 .78
 ENSG00000140521 POLG Progressive external ophthalmoplegia with mtDNA deletions; PEO 157640 139 .98 14 .07 86 .75 136 .99
 ENSG00000136827 TOR1A Myoclonic dystonia 159900 59 .34 93 .81 61 .39 130 .97
 ENSG00000127990 SGCE Myoclonic dystonia 159900 67 .51 36 .25 57 .48 62 .64
 ENSG00000149295 DRD2 Myoclonic dystonia 159900 54 .41 63 .48 81 .51 3 .02
 ENSG00000143632 ACTA1 Nemaline myopathy 1, autosomal dominant; NEM1 161800 75 .66 97 .79 47 .37 25 .27
 ENSG00000143549 TPM3 Nemaline myopathy 1, autosomal dominant; NEM1 161800 22 .13 62 .53 47 .51 23 .27
 ENSG00000198467 TPM2 Nemaline myopathy 1, autosomal dominant; NEM1 161800 107 .77 3 .02 10 .08 22 .24
 ENSG00000179142 CYP11B2 IgA nephropathy 161950 150 1.00 40 .43 73 .64 47 .43
 ENSG00000135744 AGT IgA nephropathy 161950 118 .74 32 .23 92 .68 132 .95
 ENSG00000159640 ACE IgA nephropathy 161950 1 .00 114 .88 102 .84 113 .83
 ENSG00000007908 SELE IgA nephropathy 161950 150 1.00 34 .26 32 .28 3 .02
 ENSG00000133256 PDE6B Night blindness, congenital stationary; CSNB3 163500 150 1.00 97 .67 25 .17 71 .55
 ENSG00000114349 GNAT1 Night blindness, congenital stationary; CSNB3 163500 109 .75 66 .35 71 .42 91 .78
 ENSG00000163914 RHO Night blindness, congenital stationary; CSNB3 163500 150 1.00 126 .95 137 .96 131 .97
 ENSG00000108576 SLC6A4 Obsessive-compulsive disorder 1; OCD1 164230 28 .13 23 .19 57 .39 150 1.00
 ENSG00000102468 HTR2A Obsessive-compulsive disorder 1; OCD1 164230 141 .89 86 .82 105 .83 95 .76
 ENSG00000176697 BDNF Obsessive-compulsive disorder 1; OCD1 164230 150 1.00 49 .41 49 .33 89 .81
 ENSG00000004948 CALCR Osteoporosis, involutional 166710 150 1.00 6 .05 102 .68 9 .07
 ENSG00000136244 IL6 Osteoporosis, involutional 166710 37 .15 112 .86 80 .50 30 .16
 ENSG00000162337 LRP5 Osteoporosis, involutional 166710 57 .24 6 .03 79 .49 10 .05
 ENSG00000108821 COL1A1 Osteoporosis, involutional 166710 29 .08 5 .02 6 .02 125 .71
 ENSG00000111424 VDR Osteoporosis, involutional 166710 127 .74 139 .98 34 .14 114 .75
 ENSG00000145335 SNCA Parkinson disease; PD 168600 67 .36 93 .63 105 .76 1 .01
 ENSG00000154277 UCHL1 Parkinson disease; PD 168600 59 .36 72 .37 61 .45 16 .12
 ENSG00000185345 PARK2 Parkinson disease; PD 168600 85 .54 8 .04 35 .19 2 .03
 ENSG00000064692 SNCAIP Parkinson disease; PD 168600 41 .12 150 1.00 71 .43 2 .00
 ENSG00000081248 CACNA1S Hypokalemic periodic paralysis; HOKPP 170400 150 1.00 92 .80 71 .64 24 .23
 ENSG00000175538 KCNE3 Hypokalemic periodic paralysis; HOKPP 170400 150 1.00 59 .42 38 .41 16 .13
 ENSG00000007314 SCN4A Hypokalemic periodic paralysis; HOKPP 170400 16 .16 41 .39 48 .58 114 .92
 ENSG00000165731 RET Pheochromocytoma 171300 143 .98 87 .77 30 .14 118 .94
 ENSG00000117118 SDHB Pheochromocytoma 171300 36 .26 90 .86 88 .77 100 .88
 ENSG00000196712 NF1 Pheochromocytoma 171300 139 .97 94 .83 43 .36 113 .87
 ENSG00000183765 CHEK2 Prostate cancer 176807 35 .08 89 .53 56 .42 47 .22
 ENSG00000085117 CD82 Prostate cancer 176807 24 .03 150 1.00 38 .47 115 .88
 ENSG00000067082 KLF6 Prostate cancer 176807 13 .01 145 .98 83 .58 61 .40
 ENSG00000133216 EPHB2 Prostate cancer 176807 93 .33 64 .34 47 .41 81 .46
 ENSG00000135828 RNASEL Prostate cancer 176807 150 1.00 119 .67 103 .71 25 .09
 ENSG00000038945 MSR1 Prostate cancer 176807 150 1.00 41 .22 64 .40 49 .22
 ENSG00000171862 PTEN_HUMAN Prostate cancer 176807 47 .08 25 .07 13 .04 96 .50
 ENSG00000006744 RNZ2_HUMAN Prostate cancer 176807 67 .17 12 .04 119 .87 42 .21
 ENSG00000002822 MAD1L1 Prostate cancer 176807 114 .50 104 .70 107 .84 115 .81
 ENSG00000159339 PADI4 Rheumatoid arthritis 180300 150 1.00 56 .38 83 .54 72 .44
 ENSG00000168593 NFKBIL1 Rheumatoid arthritis 180300 150 1.00 89 .60 118 .80 117 .86
 ENSG00000159216 RUNX1 Rheumatoid arthritis 180300 66 .49 108 .90 40 .22 132 .96
 ENSG00000134242 PTPN22 Rheumatoid arthritis 180300 97 .57 64 .41 120 .78 59 .39
 ENSG00000197208 SLC22A4 Rheumatoid arthritis 180300 63 .31 85 .58 89 .53 5 .02
 ENSG00000138293 NCOA4 Thyroid carcinoma, papillary 188550 27 .11 123 .98 113 .84 138 .97
 ENSG00000108946 PRKAR1A Thyroid carcinoma, papillary 188550 23 .08 31 .18 59 .34 135 .97
 ENSG00000198400 NTRK1 Thyroid carcinoma, papillary 188550 150 1.00 79 .49 67 .46 102 .67
 ENSG00000114354 TFG Thyroid carcinoma, papillary 188550 116 .66 36 .20 53 .45 70 .49
 ENSG00000047410 TPR Thyroid carcinoma, papillary 188550 10 .02 100 .63 20 .10 23 .15
 ENSG00000129991 TNNI3 Cardiomyopathy, familial hypertrophic; CMH 192600 150 1.00 108 .83 135 .87 51 .17
 ENSG00000160808 MYL3 Cardiomyopathy, familial hypertrophic; CMH 192600 52 .07 1 .00 1 .01 2 .02
 ENSG00000140416 TPM1 Cardiomyopathy, familial hypertrophic; CMH 192600 117 .43 2 .00 16 .07 1 .00
 ENSG00000155657 NP_59687.1 Cardiomyopathy, familial hypertrophic; CMH 192600 93 .29 1 .00 22 .08 98 .51
 ENSG00000092054 MYH7 Cardiomyopathy, familial hypertrophic; CMH 192600 80 .20 1 .00 57 .31 82 .43
 ENSG00000111245 MYL2 Cardiomyopathy, familial hypertrophic; CMH 192600 129 .52 2 .00 1 .00 13 .09
 ENSG00000118194 TNNT2 Cardiomyopathy, familial hypertrophic; CMH 192600 84 .17 3 .01 137 .91 2 .00
 ENSG00000134571 MYBPC3 Cardiomyopathy, familial hypertrophic; CMH 192600 150 1.00 1 .00 1 .00 33 .31
 ENSG00000101306 MYLK2 Cardiomyopathy, familial hypertrophic; CMH 192600 150 1.00 97 .72 123 .74 95 .59
 ENSG00000183785 PEX26 Adrenoleukodystrophy, autosomal neonatal form 202370 124 .54 1 .00 10 .02 33 .15
 ENSG00000162928 PEX13 Adrenoleukodystrophy, autosomal neonatal form 202370 141 .81 1 .00 83 .45 1 .00
 ENSG00000127980 PEX1 Adrenoleukodystrophy, autosomal neonatal form 202370 61 .17 74 .46 85 .45 25 .15
 ENSG00000157911 PEX10 Adrenoleukodystrophy, autosomal neonatal form 202370 88 .24 1 .00 108 .62 9 .02
 ENSG00000139197 PEX5 Adrenoleukodystrophy, autosomal neonatal form 202370 69 .19 1 .00 1 .00 4 .01
 ENSG00000047579 DTNBP1 Hermansky-Pudlak syndrome; HPS 203300 131 .80 27 .20 59 .42 145 .98
 ENSG00000107521 HPS1 Hermansky-Pudlak syndrome; HPS 203300 118 .59 30 .15 37 .33 52 .41
 ENSG00000132842 AP3B1 Hermansky-Pudlak syndrome; HPS 203300 74 .30 150 1.00 88 .62 84 .62
 ENSG00000110756 HPS5 Hermansky-Pudlak syndrome; HPS 203300 141 .92 150 1.00 77 .61 101 .76
 ENSG00000100099 HPS4 Hermansky-Pudlak syndrome; HPS 203300 50 .21 70 .37 100 .76 24 .16
 ENSG00000163755 HPS3 Hermansky-Pudlak syndrome; HPS 203300 150 1.00 150 1.00 150 1.00 150 1.00
 ENSG00000092200 RPGRIP1 Leber congenital amaurosis, type I; LCA1 204000 56 .18 21 .11 5 .04 46 .25
 ENSG00000132518 GUCY2D Leber congenital amaurosis, type I; LCA1 204000 150 1.00 69 .34 34 .14 117 .70
 ENSG00000116745 RPE65 Leber congenital amaurosis, type I; LCA1 204000 103 .40 28 .09 90 .46 100 .59
 ENSG00000139988 RDH12_HUMAN Leber congenital amaurosis, type I; LCA1 204000 64 .34 59 .34 34 .16 70 .35
 ENSG00000134376 CRB1 Leber congenital amaurosis, type I; LCA1 204000 150 1.00 16 .06 52 .24 4 .00
 ENSG00000105392 CRX Leber congenital amaurosis, type I; LCA1 204000 83 .24 116 .67 34 .14 7 .02
 ENSG00000112041 TULP1 Leber congenital amaurosis, type I; LCA1 204000 30 .09 17 .08 62 .35 68 .42
 ENSG00000165731 RET Autonomic control, congenital failure of 209880 76 .26 113 .89 31 .16 28 .22
 ENSG00000124205 EDN3 Autonomic control, congenital failure of 209880 150 1.00 39 .37 44 .21 73 .49
 ENSG00000109132 PHOX2B Autonomic control, congenital failure of 209880 54 .15 122 .86 8 .05 4 .02
 ENSG00000176697 BDNF Autonomic control, congenital failure of 209880 150 1.00 132 .94 139 .88 89 .64
 ENSG00000168621 GDNF Autonomic control, congenital failure of 209880 150 1.00 53 .24 131 .75 48 .26
 ENSG00000165533 TTC8 Bardet-Biedl syndrome; BBS 209900 150 1.00 51 .24 17 .06 13 .02
 ENSG00000174483 DPP3 Bardet-Biedl syndrome; BBS 209900 147 .93 57 .22 97 .52 90 .46
 ENSG00000138686 BBS7_HUMAN Bardet-Biedl syndrome; BBS 209900 49 .14 13 .05 65 .33 88 .50
 ENSG00000125124 BBS2 Bardet-Biedl syndrome; BBS 209900 150 1.00 6 .05 8 .05 17 .05
 ENSG00000125863 MKKS Bardet-Biedl syndrome; BBS 209900 104 .37 126 .78 103 .53 54 .27
 ENSG00000140463 BBS4 Bardet-Biedl syndrome; BBS 209900 71 .24 49 .21 23 .08 9 .03
 ENSG00000113966 ARL6 Bardet-Biedl syndrome; BBS 209900 150 1.00 42 .22 48 .30 106 .61
 ENSG00000163093 BBS5 Bardet-Biedl syndrome; BBS 209900 44 .08 150 1.00 31 .13 29 .09
 ENSG00000133111 RFXAP Bare lymphocyte syndrome, type II 209920 33 .23 123 .94 110 .76 2 .00
 ENSG00000179583 MHC2TA Bare lymphocyte syndrome, type II 209920 150 1.00 51 .41 10 .04 1 .00
 ENSG00000064490 RFXANK Bare lymphocyte syndrome, type II 209920 79 .50 122 .90 96 .49 1 .00
 ENSG00000143390 RFX5 Bare lymphocyte syndrome, type II 209920 120 .81 116 .94 15 .07 1 .00
 ENSG00000159128 IFNGR2 Atypical mycobacteriosis, familial 209950 10 .01 15 .07 11 .06 12 .06
 ENSG00000096996 IL12RB1 Atypical mycobacteriosis, familial 209950 150 1.00 33 .15 45 .27 22 .09
 ENSG00000027697 IFNGR1 Atypical mycobacteriosis, familial 209950 85 .31 13 .05 23 .13 13 .07
 ENSG00000113302 IL12B Atypical mycobacteriosis, familial 209950 150 1.00 10 .09 66 .47 4 .03
 ENSG00000115415 STAT1 Atypical mycobacteriosis, familial 209950 114 .43 109 .84 50 .28 101 .63
 ENSG00000073734 ABCB11 Cholestasis, progressive familial intrahepatic 1; PFIC1 211600 150 1.00 141 1.00 144 .99 78 .53
 ENSG00000005471 ABCB4 Cholestasis, progressive familial intrahepatic 1; PFIC1 211600 150 1.00 102 .80 120 .82 133 .91
 ENSG00000081923 ATP8B1 Cholestasis, progressive familial intrahepatic 1; PFIC1 211600 23 .08 31 .28 38 .24 123 .92
 ENSG00000099377 HSD3B7 Cholestasis, progressive familial intrahepatic 1; PFIC1 211600 94 .35 8 .11 8 .05 4 .03
 ENSG00000133703 RASK_HUMAN Lung cancer 211980 94 .62 103 .77 22 .10 61 .30
 ENSG00000157764 BRAF Lung cancer 211980 40 .19 44 .28 9 .02 14 .06
 ENSG00000141510 TP53 Lung cancer 211980 12 .03 113 .82 40 .38 150 1.00
 ENSG00000146648 EGFR Lung cancer 211980 113 .76 85 .60 40 .27 33 .24
 ENSG00000139197 PEX5 Zellweger syndrome; ZS 214100 26 .02 18 .04 6 .01 1 .00
 ENSG00000142655 PEX14 Zellweger syndrome; ZS 214100 60 .11 15 .05 4 .01 2 .00
 ENSG00000127980 PEX1 Zellweger syndrome; ZS 214100 49 .09 8 .03 7 .01 12 .04
 ENSG00000124587 PEX6 Zellweger syndrome; ZS 214100 56 .09 14 .04 9 .02 32 .15
 ENSG00000108733 PEX12 Zellweger syndrome; ZS 214100 118 .39 79 .58 131 .69 1 .00
 ENSG00000164751 PXMP3 Zellweger syndrome; ZS 214100 117 .41 3 .01 133 .71 1 .00
 ENSG00000183785 PEX26 Zellweger syndrome; ZS 214100 76 .23 17 .04 35 .14 14 .05
 ENSG00000034693 PEX3 Zellweger syndrome; ZS 214100 3 .00 1 .00 74 .30 4 .00
 ENSG00000172660 TAF15 Chondrosarcoma 215300 83 .40 114 .96 139 .91 18 .15
 ENSG00000182197 EXT1 Chondrosarcoma 215300 77 .28 40 .28 31 .23 4 .07
 ENSG00000151348 EXT2 Chondrosarcoma 215300 19 .06 24 .30 27 .19 19 .17
 ENSG00000182944 EWSR1 Chondrosarcoma 215300 28 .10 84 .59 36 .26 38 .33
 ENSG00000134183 GNAT2 Achromatopsia 2; ACHM2 216900 40 .29 121 .97 142 .99 143 1.00
 ENSG00000144191 CNGA3 Achromatopsia 2; ACHM2 216900 143 .97 59 .44 15 .08 120 .92
 ENSG00000170289 CNGB3 Achromatopsia 2; ACHM2 216900 150 1.00 91 .87 49 .47 70 .77
 ENSG00000065618 COHA1_HUMAN Epidermolysis bullosa junctionalis, disentis type 226650 19 .08 94 .61 74 .47 102 .59
 ENSG00000132470 ITGB4 Epidermolysis bullosa junctionalis, disentis type 226650 150 1.00 96 .73 47 .35 140 .98
 ENSG00000196878 LAMB3 Epidermolysis bullosa junctionalis, disentis type 226650 150 1.00 23 .14 12 .09 98 .66
 ENSG00000053747 LAMA3 Epidermolysis bullosa junctionalis, disentis type 226650 143 .99 93 .68 108 .74 55 .33
 ENSG00000165281 FANCG Fanconi anemia; FA 227650 34 .07 118 .82 15 .08 2 .00
 ENSG00000144554 FANCD2 Fanconi anemia; FA 227650 150 1.00 53 .24 52 .26 2 .00
 ENSG00000183161 FANCF Fanconi anemia; FA 227650 43 .12 45 .26 47 .26 2 .00
 ENSG00000158169 FANCC Fanconi anemia; FA 227650 26 .17 49 .28 53 .34 1 .00
 ENSG00000115392 FANCL Fanconi anemia; FA 227650 56 .21 108 .74 30 .17 4 .01
 ENSG00000112039 FANCE Fanconi anemia; FA 227650 6 .01 40 .25 32 .18 1 .00
 ENSG00000105379 ETFB Glutaricaciduria IIA 231680 7 .03 11 .07 1 .00 1 .00
 ENSG00000140374 ETFA Glutaricaciduria IIA 231680 9 .03 3 .09 1 .01 1 .00
 ENSG00000171503 ETFDH Glutaricaciduria IIA 231680 1 .00 38 .48 1 .00 1 .00
 ENSG00000188690 UROS Hydrops fetalis, idiopathic 236750 67 .30 104 .91 6 .04 76 .52
 ENSG00000169919 GUSB Hydrops fetalis, idiopathic 236750 143 .96 120 .95 98 .55 112 .84
 ENSG00000177628 GBA Hydrops fetalis, idiopathic 236750 108 .69 118 .95 113 .79 115 .85
 ENSG00000188536 HBA1 Hydrops fetalis, idiopathic 236750 42 .16 133 .99 112 .69 76 .53
 ENSG00000179477 ALOX12B Ichthyosiform erythroderma, congenital, nonbullous, 1; NCIE1 242100 150 1.00 111 .91 48 .33 33 .31
 ENSG00000011198 ABHD5 Ichthyosiform erythroderma, congenital, nonbullous, 1; NCIE1 242100 70 .35 4 .03 2 .02 3 .02
 ENSG00000092295 TGM1 Ichthyosiform erythroderma, congenital, nonbullous, 1; NCIE1 242100 28 .16 12 .09 14 .08 31 .19
 ENSG00000122735 DNAI1 Kartagener syndrome 244400 14 .06 150 1.00 35 .34 60 .39
 ENSG00000039139 DNAH5 Kartagener syndrome 244400 150 1.00 3 .06 6 .03 17 .09
 ENSG00000105877 DNAH11 Kartagener syndrome 244400 150 1.00 7 .05 6 .03 7 .08
 ENSG00000112964 GHR Laron syndrome, type II 245590 150 1.00 76 .57 19 .15 9 .09
 ENSG00000189162 GH1 Laron syndrome, type II 245590 150 1.00 13 .08 24 .17 19 .20
 ENSG00000173757 STAT5B Laron syndrome, type II 245590 77 .50 119 .98 90 .71 79 .54
 ENSG00000137992 DBT Maple syrup urine disease, type IA 248600 54 .22 103 .71 47 .18 12 .04
 ENSG00000091140 DLD Maple syrup urine disease, type IA 248600 78 .37 115 .94 76 .43 3 .04
 ENSG00000142046 BCKDHA Maple syrup urine disease, type IA 248600 44 .06 51 .35 34 .19 1 .00
 ENSG00000083123 BCKDHB Maple syrup urine disease, type IA 248600 114 .66 19 .12 112 .69 1 .01
 ENSG00000167792 NDUFV1 Complex I, mitochondrial respiratory chain, deficiency of 252010 45 .11 12 .05 13 .05 17 .07
 ENSG00000115286 NDUFS7 Complex I, mitochondrial respiratory chain, deficiency of 252010 77 .20 7 .04 21 .13 35 .17
 ENSG00000164258 NDUFS4 Complex I, mitochondrial respiratory chain, deficiency of 252010 99 .42 6 .03 4 .02 2 .02
 ENSG00000023228 NDUFS1 Complex I, mitochondrial respiratory chain, deficiency of 252010 139 .79 10 .04 1 .00 1 .00
 ENSG00000158864 NDUFS2 Complex I, mitochondrial respiratory chain, deficiency of 252010 22 .04 11 .05 2 .00 2 .01
 ENSG00000110092 CCND1 Myeloma, multiple 254500 4 .02 126 .94 142 .99 7 .06
 ENSG00000130076 IGHG3 Myeloma, multiple 254500 34 .21 78 .60 143 .99 150 1.00
 ENSG00000068078 FGFR3 Myeloma, multiple 254500 105 .83 16 .14 41 .28 51 .41
 ENSG00000137265 IRF4 Myeloma, multiple 254500 31 .14 125 .76 34 .16 102 .72
 ENSG00000115286 NDUFS7 Leigh syndrome; LS 256000 31 .02 5 .01 9 .02 9 .02
 ENSG00000074582 BCS1L Leigh syndrome; LS 256000 63 .16 110 .77 98 .61 115 .73
 ENSG00000073578 SDHA Leigh syndrome; LS 256000 15 .03 31 .21 38 .17 80 .36
 ENSG00000110536 NDUFS3 Leigh syndrome; LS 256000 33 .05 3 .02 1 .01 1 .01
 ENSG00000091140 DLD Leigh syndrome; LS 256000 113 .39 5 .02 132 .80 98 .55
 ENSG00000110717 NDUFS8 Leigh syndrome; LS 256000 6 .00 5 .02 1 .00 1 .00
 ENSG00000006071 ABCC8 Nesidioblastosis of pancreas 256450 136 .96 139 1.00 76 .81 57 .67
 ENSG00000106633 GCK Nesidioblastosis of pancreas 256450 98 .72 3 .04 3 .02 53 .50
 ENSG00000148672 GLUD1 Nesidioblastosis of pancreas 256450 67 .29 15 .15 79 .75 56 .42
 ENSG00000141655 TNFRSF11A Osteogenic sarcoma 259500 145 1.00 38 .31 38 .32 5 .08
 ENSG00000139687 RB1 Osteogenic sarcoma 259500 104 .65 131 .98 100 .75 40 .37
 ENSG00000183765 CHEK2 Osteogenic sarcoma 259500 147 .98 81 .60 104 .74 120 .96
 ENSG00000081087 OSTM1 Osteopetrosis, autosomal recessive 259700 45 .33 150 1.00 37 .24 81 .65
 ENSG00000103249 CLCN7 Osteopetrosis, autosomal recessive 259700 144 .99 118 .95 135 .93 90 .67
 ENSG00000110719 TCIRG1 Osteopetrosis, autosomal recessive 259700 69 .61 77 .53 71 .48 81 .74
 ENSG00000133703 RASK_HUMAN Pancreatic carcinoma 260350 4 .01 28 .14 10 .05 56 .26
 ENSG00000141510 TP53 Pancreatic carcinoma 260350 108 .53 111 .71 84 .43 102 .54
 ENSG00000145050 ARMET Pancreatic carcinoma 260350 106 .61 150 1.00 100 .61 91 .51
 ENSG00000147889 CDKN2A Pancreatic carcinoma 260350 150 1.00 27 .14 28 .15 107 .61
 ENSG00000141646 SMAD4 Pancreatic carcinoma 260350 33 .14 130 .96 82 .62 122 .84
 ENSG00000139618 BRCA2 Pancreatic carcinoma 260350 122 .74 140 .96 96 .64 50 .25
 ENSG00000144191 CNGA3 Achromatopsia 3; ACHM3 262300 144 .98 54 .45 15 .08 119 .92
 ENSG00000134183 GNAT2 Achromatopsia 3; ACHM3 262300 37 .25 115 .96 134 .99 150 1.00
 ENSG00000170289 CNGB3 Achromatopsia 3; ACHM3 262300 150 1.00 91 .86 47 .47 72 .76
 ENSG00000107187 LHX3 Pituitary dwarfism III 262600 81 .46 112 .94 125 .91 104 .92
 ENSG00000163666 HESX1 Pituitary dwarfism III 262600 150 1.00 123 .94 33 .18 23 .08
 ENSG00000175325 PROP1 Pituitary dwarfism III 262600 150 1.00 120 .93 39 .33 4 .03
 ENSG00000111319 SCNN1A Pseudohypoaldosteronism, type I, autosomal recessive; PHA1 264350 35 .30 2 .02 6 .04 33 .36
 ENSG00000168447 SCNN1B Pseudohypoaldosteronism, type I, autosomal recessive; PHA1 264350 104 .82 3 .03 1 .00 24 .26
 ENSG00000151623 NR3C2 Pseudohypoaldosteronism, type I, autosomal recessive; PHA1 264350 51 .40 133 .99 150 1.00 62 .57
 ENSG00000168878 SFTPB Pulmonary alveolar proteinosis 265120 150 1.00 9 .09 16 .20 67 .68
 ENSG00000100368 CSF2RB Pulmonary alveolar proteinosis 265120 150 1.00 19 .18 13 .08 121 .99
 ENSG00000168484 SFTPC Pulmonary alveolar proteinosis 265120 150 1.00 4 .03 3 .04 114 .88
 ENSG00000164751 PXMP3 Refsum disease, infantile form 266510 118 .82 76 .53 32 .22 27 .18
 ENSG00000127980 PEX1 Refsum disease, infantile form 266510 33 .17 29 .24 86 .59 1 .01
 ENSG00000183785 PEX26 Refsum disease, infantile form 266510 94 .63 6 .04 8 .03 2 .02
 ENSG00000197375 SLC22A5 Inflammatory bowel disease 1; IBD1 266600 35 .18 95 .78 16 .12 10 .06
 ENSG00000151208 DLG5 Inflammatory bowel disease 1; IBD1 266600 45 .22 114 .81 47 .36 94 .64
 ENSG00000167207 CARD15 Inflammatory bowel disease 1; IBD1 266600 150 1.00 102 .80 54 .32 47 .30
 ENSG00000085563 ABCB1 Inflammatory bowel disease 1; IBD1 266600 150 1.00 29 .22 35 .21 43 .29
 ENSG00000092929 UNC13D Reticulosis, familial histiocytic 267700 150 1.00 36 .30 30 .34 52 .53
 ENSG00000166349 RAG1 Reticulosis, familial histiocytic 267700 150 1.00 92 .82 92 .75 16 .22
 ENSG00000180644 PRF1 Reticulosis, familial histiocytic 267700 57 .23 53 .36 43 .31 138 .99
 ENSG00000135903 PAX3 Rhabdomyosarcoma 2; RMS2 268220 70 .43 114 .89 100 .82 69 .60
 ENSG00000150907 FOXO1A Rhabdomyosarcoma 2; RMS2 268220 86 .49 128 .97 110 .73 135 .98
 ENSG00000009709 PAX7 Rhabdomyosarcoma 2; RMS2 268220 37 .26 122 .95 98 .71 99 .77
 ENSG00000108576 SLC6A4 Sudden infant death syndrome 272120 120 .80 50 .55 39 .36 150 1.00
 ENSG00000183873 SCN5A Sudden infant death syndrome 272120 145 .99 17 .20 23 .10 33 .31
 ENSG00000053918 KCNQ1 Sudden infant death syndrome 272120 150 1.00 2 .01 7 .10 58 .53
 ENSG00000163599 CTLA4 Graves disease 275000 150 1.00 34 .19 150 1.00 94 .90
 ENSG00000145321 GC Graves disease 275000 50 .37 88 .76 91 .61 51 .30
 ENSG00000111424 VDR Graves disease 275000 67 .33 124 .99 20 .15 14 .17
 ENSG00000134982 APC Turcot syndrome 276300 1 .00 134 .99 4 .02 35 .26
 ENSG00000076242 MLH1 Turcot syndrome 276300 115 .83 1 .01 9 .10 1 .03
 ENSG00000122512 PMS2 Turcot syndrome 276300 7 .06 1 .01 2 .01 1 .01
 ENSG00000100146 SOX10 Waardenburg-Shah syndrome 277580 53 .32 8 .05 123 .93 82 .68
 ENSG00000124205 EDN3 Waardenburg-Shah syndrome 277580 150 1.00 70 .50 140 .99 14 .13
 ENSG00000136160 EDNRB Waardenburg-Shah syndrome 277580 150 1.00 1 .01 5 .02 72 .56
 ENSG00000112357 PEX7 Rhizomelic chondrodysplasia punctata, type 3; RCDP3 600121 112 .80 26 .25 111 .85 125 .97
 ENSG00000116906 GNPAT Rhizomelic chondrodysplasia punctata, type 3; RCDP3 600121 130 .88 116 .91 121 .90 16 .14
 ENSG00000018510 AGPS Rhizomelic chondrodysplasia punctata, type 3; RCDP3 600121 98 .71 8 .08 93 .87 5 .06
 ENSG00000170175 CHRNB1 Myasthenic syndrome, slow-channel congenital; SCCMS 601462 36 .20 58 .43 40 .34 115 .90
 ENSG00000135902 CHRND Myasthenic syndrome, slow-channel congenital; SCCMS 601462 56 .33 1 .00 2 .00 6 .01
 ENSG00000138435 CHRNA1 Myasthenic syndrome, slow-channel congenital; SCCMS 601462 132 1.00 1 .01 2 .01 1 .00
 ENSG00000175426 PCSK1 Obesity 601665 10 .01 63 .34 46 .18 29 .13
 ENSG00000115138 POMC Obesity 601665 66 .17 105 .68 93 .49 7 .02
 ENSG00000116678 LEPR Obesity 601665 8 .02 94 .72 62 .32 1 .00
 ENSG00000166603 MC4R Obesity 601665 145 1.00 17 .10 108 .67 19 .09
 ENSG00000174483 DPP3 Obesity 601665 66 .21 95 .64 10 .04 4 .01
 ENSG00000174697 LEP Obesity 601665 150 1.00 130 .94 133 .86 52 .31
 ENSG00000130203 APOE Obesity 601665 58 .22 46 .16 43 .22 52 .27
 ENSG00000142156 COL6A1 Ossification of the posterior longitudinal ligament of spine; OPLL 602475 112 1.00 36 .38 40 .28 77 .70
 ENSG00000112112 COL11A2 Ossification of the posterior longitudinal ligament of spine; OPLL 602475 138 .95 33 .41 31 .36 23 .27
 ENSG00000197594 ENPP1 Ossification of the posterior longitudinal ligament of spine; OPLL 602475 150 1.00 29 .16 69 .52 59 .60
 ENSG00000115211 EIF2B4 Leukoencephalopathy with vanishing white matter; VWM 603896 4 .00 2 .01 2 .00 9 .02
 ENSG00000070785 EIF2B3 Leukoencephalopathy with vanishing white matter; VWM 603896 4 .00 3 .01 2 .00 10 .02
 ENSG00000111361 EIF2B1 Leukoencephalopathy with vanishing white matter; VWM 603896 2 .00 4 .01 1 .00 11 .03
 ENSG00000119718 EIF2B2 Leukoencephalopathy with vanishing white matter; VWM 603896 1 .00 2 .00 4 .00 7 .02
 ENSG00000145191 EIF2B5 Leukoencephalopathy with vanishing white matter; VWM 603896 2 .00 1 .00 1 .00 5 .01
 ENSG00000138061 CYP1B1 Peters anomaly 604229 49 .29 58 .40 87 .60 28 .17
 ENSG00000054598 FOXC1 Peters anomaly 604229 38 .09 133 .96 145 .98 99 .58
 ENSG00000164093 PITX2 Peters anomaly 604229 150 1.00 130 .95 21 .17 133 .95
 ENSG00000007372 PAX6 Peters anomaly 604229 142 .96 118 .90 35 .26 11 .11
 ENSG00000144285 SCN1A Generalized epilepsy with febrile seizures plus; GEFS+ 604233 5 .01 11 .09 10 .04 12 .09
 ENSG00000113327 GABRG2 Generalized epilepsy with febrile seizures plus; GEFS+ 604233 17 .04 68 .47 130 .97 123 .97
 ENSG00000105711 SCN1B Generalized epilepsy with febrile seizures plus; GEFS+ 604233 64 .41 13 .08 12 .05 105 .70
 ENSG00000157764 BRAF Lymphoma, non-Hodgkin, familial 605027 139 .84 17 .13 65 .30 122 .92
 ENSG00000003400 CASP10 Lymphoma, non-Hodgkin, familial 605027 77 .44 1 .00 29 .11 7 .06
 ENSG00000149311 ATM Lymphoma, non-Hodgkin, familial 605027 36 .13 130 .95 61 .33 137 .98
 ENSG00000085999 RAD54L Lymphoma, non-Hodgkin, familial 605027 141 .87 18 .11 3 .02 2 .01
 ENSG00000143294 PRCC Renal cell carcinoma, papillary 605074 122 .83 150 1.00 32 .28 48 .47
 ENSG00000068323 TFE3 Renal cell carcinoma, papillary 605074 66 .45 115 .98 121 .94 7 .09
 ENSG00000105976 MET Renal cell carcinoma, papillary 605074 10 .04 71 .68 42 .42 50 .45
 ENSG00000102245 TNFL5_HUMAN Immunodeficiency with hyper-IgM, type 2 605258 150 1.00 8 .11 46 .45 8 .08
 ENSG00000101017 CD40 Immunodeficiency with hyper-IgM, type 2 605258 67 .43 22 .21 99 .79 23 .21
 ENSG00000111732 AICDA Immunodeficiency with hyper-IgM, type 2 605258 150 1.00 62 .39 117 .86 44 .48
 ENSG00000139515 IPF1 Maturity-onset diabetes of the young; MODY 606391 150 1.00 124 .88 115 .62 12 .04
 ENSG00000135100 TCF1 Maturity-onset diabetes of the young; MODY 606391 150 1.00 135 .93 97 .52 12 .09
 ENSG00000101076 HNF4A Maturity-onset diabetes of the young; MODY 606391 76 .33 124 .90 125 .74 37 .17
 ENSG00000106633 GCK Maturity-onset diabetes of the young; MODY 606391 133 .64 102 .66 78 .46 19 .09
 ENSG00000162992 NEUROD1 Maturity-onset diabetes of the young; MODY 606391 7 .02 30 .14 3 .01 31 .14
 ENSG00000102245 TNFL5_HUMAN Immunodeficiency with hyper-IgM, type 3 606843 150 1.00 10 .12 44 .43 7 .07
 ENSG00000101017 CD40 Immunodeficiency with hyper-IgM, type 3 606843 70 .48 22 .19 100 .81 20 .19
 ENSG00000111732 AICDA Immunodeficiency with hyper-IgM, type 3 606843 150 1.00 67 .45 115 .84 62 .55
 ENSG00000022355 GABRA1 Myoclonic epilepsy, juvenile; JME 606904 14 .03 37 .13 104 .63 28 .16
 ENSG00000096093 EFHC1 Myoclonic epilepsy, juvenile; JME 606904 150 1.00 150 1.00 150 1.00 27 .14
 ENSG00000182389 CACNB4 Myoclonic epilepsy, juvenile; JME 606904 49 .17 118 .86 68 .39 28 .18
 ENSG00000114859 CLCN2 Myoclonic epilepsy, juvenile; JME 606904 150 1.00 6 .01 42 .18 40 .26
 ENSG00000179295 PTPN11 Juvenile myelomonocytic leukemia 607785 125 .91 20 .13 133 .95 52 .46
 ENSG00000196712 NF1 Juvenile myelomonocytic leukemia 607785 74 .42 5 .06 30 .20 2 .01
 ENSG00000133703 RASK_HUMAN Juvenile myelomonocytic leukemia 607785 118 .66 17 .14 18 .10 38 .30
 ENSG00000168638 NRAS Juvenile myelomonocytic leukemia 607785 51 .13 104 .81 6 .03 44 .30
 ENSG00000197499 HLA-A Mycobacterium tuberculosis, susceptibility to infection by 607948 102 .81 41 .52 100 .88 115 .90
 ENSG00000165471 MBL2 Mycobacterium tuberculosis, susceptibility to infection by 607948 150 1.00 33 .41 14 .15 87 .79
 ENSG00000111424 VDR Mycobacterium tuberculosis, susceptibility to infection by 607948 141 1.00 119 .99 125 .98 98 .84
 ENSG00000108556 CHRNE Myasthenic syndrome, congenital, fast-channel 608930 150 1.00 64 .45 141 .96 1 .00
 ENSG00000138435 CHRNA1 Myasthenic syndrome, congenital, fast-channel 608930 150 1.00 1 .00 1 .00 1 .00
 ENSG00000135902 CHRND Myasthenic syndrome, congenital, fast-channel 608930 56 .36 1 .00 1 .00 6 .02

Correction for Bias in Gold Standard

Once the likelihood ratios of the microarray coexpression data sets were determined, it became evident that the likelihood ratio of the gene pairs composed of genes that were present on the microarrays was >1, whereas that of gene pairs composed of genes not represented on the arrays was <1. We had not expected any difference in likelihood ratios between genes represented on the array and genes not on the array, but, in fact, the observed difference was pronounced (fig. A1).

Figure A1.

Figure  A1

Difference in likelihood ratios between genes that were represented on the microarrays and genes that were not.

It turned out that only a small subset of different genes (7,197 of the 55,606 genes) made up the 55,606 true-positive, gold standard gene pairs. After we had determined the subset of genes that made up the initial, true-negative, gold standard gene pairs and had compared this with the 7,197 genes making up the true-positive gene pairs, we found that the overlap for individual genes was smaller than expected. A large number of the genes in the true-negative gene pairs were never part of a true-positive gene pair. In addition, the genes in the true-negative pairs were generally less-well annotated. If we subsequently determine the likelihood ratio of the bins in a data set—where one bin contains many gene pairs composed of only a limited number of genes, and the other bins contain hardly any gene pairs formed with one of those genes—the inclusion or exclusion of any of those genes will bias the likelihood ratio, as observed in the microarray coexpression data sets.

To overcome this bias, we tried to come up with a gold standard in which every gene forms both a true-positive gene pair (together with another gene) and also a true-negative gene pair (in conjunction with another, different gene). Only 5,105 genes met our criterion of forming a true-positive gene pair at least three times, and these genes were then allowed to form gene pairs within the true-negative, gold standard reference. This restriction confined the true-negative, gold standard reference list to 801,108 gene pairs, from which 500 gene pairs could be removed because they were already known to be true-positive gene pairs.

Bayesian Integration and Graph-Theoretical Distance Measure Calculation

To generate the four networks, the various data sets were combined in a Bayesian manner. First, two measures, derived from the GO Biological Process data set, were combined in a naive way. This method was also applied to the two GO Molecular Function data sets. Subsequently, the overall GO Biological Process data set and the overall GO Molecular Function data set were combined in a fully connected way; for each gene pair, we determined the combination of the two GO bins to which they belonged. Once all the gene pairs had been assessed, the bin combinations contained a large number of gene pairs, which permitted determination of the likelihood ratio. Once the overall GO data set had been generated in a fully connected way, all remaining data sets were combined in a naive way, as shown in figure 2.

To determine the overall likelihood ratio when combining n data sets (f1fn), defined as

graphic file with name AJHGv78p1011df2.jpg

we assumed conditional independence between the data sets and used the simplified, naive Bayes formula to compute the likelihood ratio by taking the product of the likelihood ratios (L) for each independent feature:

graphic file with name AJHGv78p1011df3.jpg

To calculate the eventual microarray coexpression plus protein-protein interaction likelihood ratios, the previously determined likelihood ratios from the microarray coexpression data set and the protein-protein interaction data set were multiplied. The likelihood ratios of the overall GO data set and the overall microarray plus protein-protein interaction data set were multiplied to generate the combined GO, microarray coexpression, and protein-protein interaction network.

Usually, after the likelihood ratios have been determined, we want to calculate a posterior probability of interaction by multiplying the likelihood ratio with the prior probability of interaction, defined as

graphic file with name AJHGv78p1011df4.jpg

However, since it is difficult to estimate the number of existing human gene-gene interactions, no specific prior probability for interaction was assumed. To facilitate successful learning of the classifier, a uniform (ignorant) prior was used for both the training and the test set, which allowed us to adjust the computed posterior probability, to take into account any plausible prior probability of interaction.

In addition, it was decided that the gene pairs would not be discretized into interacting or noninteracting pairs, but, instead, a continuous graph-theoretical distance measure that could be employed in the graph network would be used, while taking into account that evidence for interaction could vary. First, all gene pairs were ranked on the basis of the computed likelihood ratio. Subsequently, this ranking was used to define a distance measure that ranged from 1 (highly likely gene-gene interaction) to 255 (highly unlikely gene-gene interaction) and followed a cumulative distribution function (CDF):

graphic file with name AJHGv78p1011df5.jpg

Degree Distribution of the Four Networks

Degree distributions were determined to assess whether the reconstructed networks followed a scale-free, power-law distribution (fig. A2). The number of interacting genes per gene k was determined, assuming a conservative prior of 0.005. The proportion p of genes having k interactions was plotted against k.

Figure A2.

Figure  A2

Degree distributions for the four networks. The MA+Y2H network has a topology that most closely follows a scale-free, power-law distribution, compared with the other three networks.

Web Resources

The URLs for data presented herein are as follows:

  1. Biomolecular Interaction Network Database (BIND), http://bind.ca/
  2. Ensembl, http://www.ensembl.org/index.html
  3. GeneNetwork, http://www.genenetwork.nl
  4. Human Protein Reference Database (HPRD), http://www.hprd.org/
  5. Kyoto Encyclopedia of Genes and Genomes (KEGG), http://www.genome.jp/kegg/
  6. Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.nlm.nih.gov/Omim/
  7. Prioritizer, http://www.prioritizer.nl
  8. Reactome, http://www.reactome.org/

References

  • 1.Jacobi FK, Broghammer M, Pesch K, Zrenner E, Berger W, Meindl A, Pusch CM (2000) Physical mapping and exclusion of GPR34 as the causative gene for congenital stationary night blindness type 1. Hum Genet 107:89–91 10.1007/s004390050017 [DOI] [PubMed] [Google Scholar]
  • 2.Seri M, Martucciello G, Paleari L, Bolino A, Priolo M, Salemi G, Forabosco P, Caroli F, Cusano R, Tocco T, Lerone M, Cama A, Torre M, Guys JM, Romeo G, Jasonni V (1999) Exclusion of the Sonic Hedgehog gene as responsible for Currarino syndrome and anorectal malformations with sacral hypodevelopment. Hum Genet 104:108–110 10.1007/s004390050919 [DOI] [PubMed] [Google Scholar]
  • 3.Simard J, Feunteun J, Lenoir G, Tonin P, Normand T, Luu The V, Vivier A, et al (1993) Genetic mapping of the breast-ovarian cancer syndrome to a small interval on chromosome 17q12-21: exclusion of candidate genes EDH17B2 and RARA. Hum Mol Genet 2:1193–1199 [DOI] [PubMed] [Google Scholar]
  • 4.Tumer Z, Croucher PJ, Jensen LR, Hampe J, Hansen C, Kalscheuer V, Ropers HH, Tommerup N, Schreiber S (2002) Genomic structure, chromosome mapping and expression analysis of the human AVIL gene, and its exclusion as a candidate for locus for inflammatory bowel disease at 12q13-14 (IBD2). Gene 288:179–185 10.1016/S0378-1119(02)00478-X [DOI] [PubMed] [Google Scholar]
  • 5.Walpole SM, Ronce N, Grayson C, Dessay B, Yates JR, Trump D, Toutain A (1999) Exclusion of RAI2 as the causative gene for Nance-Horan syndrome. Hum Genet 104:410–411 10.1007/s004390050976 [DOI] [PubMed] [Google Scholar]
  • 6.Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, Liu Q, et al (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266:66–71 [DOI] [PubMed] [Google Scholar]
  • 7.Joenje H, Patel KJ (2001) The emerging genetic and molecular basis of Fanconi anaemia. Nat Rev Genet 2:446–457 10.1038/35076590 [DOI] [PubMed] [Google Scholar]
  • 8.D’Andrea AD, Grompe M (2003) The Fanconi anaemia/BRCA pathway. Nat Rev Cancer 3:23–34 10.1038/nrc970 [DOI] [PubMed] [Google Scholar]
  • 9.de Winter JP, van der Weel L, de Groot J, Stone S, Waisfisz Q, Arwert F, Scheper RJ, Kruyt FA, Hoatlin ME, Joenje H (2000) The Fanconi anemia protein FANCF forms a nuclear complex with FANCA, FANCC and FANCG. Hum Mol Genet 9:2665–2674 10.1093/hmg/9.18.2665 [DOI] [PubMed] [Google Scholar]
  • 10.Yamashita T, Kupfer GM, Naf D, Suliman A, Joenje H, Asano S, D’Andrea AD (1998) The Fanconi anemia pathway requires FAA phosphorylation and FAA/FAC nuclear accumulation. Proc Natl Acad Sci USA 95:13085–13090 10.1073/pnas.95.22.13085 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Zatz M, de Paula F, Starling A, Vainzof M (2003) The 10 autosomal recessive limb-girdle muscular dystrophies. Neuromuscul Disord 13:532–544 10.1016/S0960-8966(03)00100-7 [DOI] [PubMed] [Google Scholar]
  • 12.Alfarano C, Andrade CE, Anthony K, Bahroos N, Bajec M, Bantoft K, Betel D, et al (2005) The Biomolecular Interaction Network Database and related tools 2005 update. Nucleic Acids Res Database Issue 33:D418–D424 10.1093/nar/gki051 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Peri S, Navarro JD, Kristiansen TZ, Amanchy R, Surendranath V, Muthusamy B, Gandhi TK, et al (2004) Human Protein Reference Database as a discovery resource for proteomics. Nucleic Acids Res Database Issue 32:D497–D501 10.1093/nar/gkh070 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res Database Issue 32:D277–D280 10.1093/nar/gkh063 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Joshi-Tope G, Gillespie M, Vastrik I, D’Eustachio P, Schmidt E, de Bono B, Jassal B, Gopinath GR, Wu GR, Matthews L, Lewis S, Birney E, Stein L (2005) Reactome: a knowledgebase of biological pathways. Nucleic Acids Res Database Issue 33:D428–D432 10.1093/nar/gki072 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, Eilbeck K, et al (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res Database Issue 32:D258–D261 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Ball CA, Awad IA, Demeter J, Gollub J, Hebert JM, Hernandez-Boussard T, Jin H, Matese JC, Nitzberg M, Wymore F, Zachariah ZK, Brown PO, Sherlock G (2005) The Stanford Microarray Database accommodates additional microarray platforms and data formats. Nucleic Acids Res Database Issue 33:D580–D582 10.1093/nar/gki006 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Barrett T, Suzek TO, Troup DB, Wilhite SE, Ngau WC, Ledoux P, Rudnev D, Lash AE, Fujibuchi W, Edgar R (2005) NCBI GEO: mining millions of expression profiles—database and tools. Nucleic Acids Res Database Issue 33:D562–D566 10.1093/nar/gki022 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksoz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H, Wanker EE (2005) A human protein-protein interaction network: a resource for annotating the proteome. Cell 122:957–968 10.1016/j.cell.2005.08.029 [DOI] [PubMed] [Google Scholar]
  • 20.Lehner B, Fraser AG (2004) A first-draft human protein-interaction map. Genome Biol 5:R63 10.1186/gb-2004-5-9-r63 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Turner FS, Clutterbuck DR, Semple CA (2003) POCUS: mining genomic sequence annotation to predict disease genes. Genome Biol 4:R75 10.1186/gb-2003-4-11-r75 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Brunner HG, van Driel MA (2004) From syndrome families to functional genomics. Nat Rev Genet 5:545–551 10.1038/nrg1383 [DOI] [PubMed] [Google Scholar]
  • 23.Birney E, Andrews TD, Bevan P, Caccamo M, Chen Y, Clarke L, Coates G, et al (2004) An overview of Ensembl. Genome Res 14:925–928 10.1101/gr.1860604 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Beaumont MA, Rannala B (2004) The Bayesian revolution in genetics. Nat Rev Genet 5:251–261 10.1038/nrg1318 [DOI] [PubMed] [Google Scholar]
  • 25.Egmont-Petersen M, Feelders A, Baesens B (2005) Confidence intervals for probabilistic network classifiers. Comput Stat Data Anal 49:998–1019 10.1016/j.csda.2004.06.018 [DOI] [Google Scholar]
  • 26.Jansen R, Yu H, Greenbaum D, Kluger Y, Krogan NJ, Chung S, Emili A, Snyder M, Greenblatt JF, Gerstein M (2003) A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science 302:449–453 10.1126/science.1087361 [DOI] [PubMed] [Google Scholar]
  • 27.Lee I, Date SV, Adai AT, Marcotte EM (2004) A probabilistic functional network of yeast genes. Science 306:1555–1558 10.1126/science.1099511 [DOI] [PubMed] [Google Scholar]
  • 28.Xia Y, Yu H, Jansen R, Seringhaus M, Baxter S, Greenbaum D, Zhao H, Gerstein M (2004) Analyzing cellular biochemistry in terms of molecular networks. Annu Rev Biochem 73:1051–1087 10.1146/annurev.biochem.73.011303.073950 [DOI] [PubMed] [Google Scholar]
  • 29.Friedman N, Geiger D, Goldszmidt M (1997) Bayesian network classifiers. Mach Learn 29:131–163 10.1023/A:1007465528199 [DOI] [Google Scholar]
  • 30.Jansen R, Gerstein M (2004) Analyzing protein function on a genomic scale: the importance of gold-standard positives and negatives for network prediction. Curr Opin Microbiol 7:535–545 10.1016/j.mib.2004.08.012 [DOI] [PubMed] [Google Scholar]
  • 31.Lee HK, Hsu AK, Sajdak J, Qin J, Pavlidis P (2004) Coexpression analysis of human genes across many microarray data sets. Genome Res 14:1085–1094 10.1101/gr.1910904 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Ning Z, Cox AJ, Mullikin JC (2001) SSAHA: a fast search method for large DNA databases. Genome Res 11:1725–1729 10.1101/gr.194201 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, Califano A (2005) Reverse engineering of regulatory networks in human B cells. Nat Genet 37:382–390 10.1038/ng1532 [DOI] [PubMed] [Google Scholar]
  • 34.Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423, 623–356 [Google Scholar]
  • 35.Floyd RW (1962) Algorithm 97: shortest path. Commun ACM 5:345 10.1145/367766.368168 [DOI] [Google Scholar]
  • 36.Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA (2005) Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res Database Issue 33:D514–D517 10.1093/nar/gki033 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Jain A, Zongker D (1997) Feature selection: evaluation, application and small sample performance. IEEE Trans Pattern Anal 19:153–158 10.1109/34.574797 [DOI] [Google Scholar]
  • 38.Waller WG, Jain AK (1978) Monotonicity of performance of Bayesian classifiers. IEEE Trans Inform Theory 24:392–394 10.1109/TIT.1978.1055877 [DOI] [Google Scholar]
  • 39.Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, Cooke MP, Walker JR, Hogenesch JB (2004) A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 101:6062–6067 10.1073/pnas.0400782101 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Stegmaier K, Ross KN, Colavito SA, O’Malley S, Stockwell BR, Golub TR (2004) Gene expression-based high-throughput screening (GE-HTS) and application to leukemia differentiation. Nat Genet 36:257–263 10.1038/ng1305 [DOI] [PubMed] [Google Scholar]
  • 41.Rieger KE, Hong WJ, Tusher VG, Tang J, Tibshirani R, Chu G (2004) Toxicity from radiation therapy associated with abnormal transcriptional responses to DNA damage. Proc Natl Acad Sci USA 101:6635–6640 10.1073/pnas.0307761101 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Rieger KE, Chu G (2004) Portrait of transcriptional responses to ultraviolet and ionizing radiation in human cells. Nucleic Acids Res 32:4786–4803 10.1093/nar/gkh783 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113 10.1038/nrg1272 [DOI] [PubMed] [Google Scholar]
  • 44.Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, et al (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415:180–183 10.1038/415180a [DOI] [PubMed] [Google Scholar]
  • 45.Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, Li Y, Hao YL, et al (2003) A protein interaction map of Drosophila melanogaster. Science 302:1727–1736 10.1126/science.1090289 [DOI] [PubMed] [Google Scholar]
  • 46.Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, et al (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147 10.1038/415141a [DOI] [PubMed] [Google Scholar]
  • 47.Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, et al (2005) Towards a proteome-scale map of the human protein-protein interaction network. Nature 437:1173–1178 10.1038/nature04209 [DOI] [PubMed] [Google Scholar]
  • 48.Vidalain PO, Boxem M, Ge H, Li S, Vidal M (2004) Increasing specificity in high-throughput yeast two-hybrid experiments. Methods 32:363–370 10.1016/j.ymeth.2003.10.001 [DOI] [PubMed] [Google Scholar]
  • 49.Egmont-Petersen M, de Jonge W, Siebes A (2004) Discovery of regulatory connections in microarray data. In: Proceedings of the 8th European Conference on Principles and Practice of Knowledge Discovery in Databases, pp 149–160 [Google Scholar]
  • 50.Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bradley P, et al (2005) InterPro, progress and status in 2005. Nucleic Acids Res Database Issue 33:D201–D205 10.1093/nar/gki106 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Yandell MD, Majoros WH (2002) Genomics and natural language processing. Nat Rev Genet 3:601–610 [DOI] [PubMed] [Google Scholar]
  • 52.Malik R, Siebes A (2005) CONAN: an integrative system for biomedical literature mining. Lect Notes Artif Intell 3808:248–259 [Google Scholar]
  • 53.Bader JS, Chaudhuri A, Rothberg JM, Chant J (2004) Gaining confidence in high-throughput protein interaction networks. Nat Biotechnol 22:78–85 10.1038/nbt924 [DOI] [PubMed] [Google Scholar]
  • 54.Franke L, van Bakel H, Diosdado B, van Belzen M, Wapenaar M, Wijmenga C (2004) TEAM: a tool for the integration of expression, and linkage and association maps. Eur J Hum Genet 12:633–638 10.1038/sj.ejhg.5201215 [DOI] [PubMed] [Google Scholar]
  • 55.Morley M, Molony CM, Weber TM, Devlin JL, Ewens KG, Spielman RS, Cheung VG (2004) Genetic analysis of genome-wide variation in human gene expression. Nature 430:743–747 10.1038/nature02797 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo V, Ruff TG, Milligan SB, Lamb JR, Cavet G, Linsley PS, Mao M, Stoughton RB, Friend SH (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature 422:297–302 10.1038/nature01434 [DOI] [PubMed] [Google Scholar]
  • 57.Dudbridge F, Koeleman BP (2004) Efficient computation of significance levels for multiple associations in large studies of correlated data, including genomewide association studies. Am J Hum Genet 75:424–435 [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES