Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Mar 1;26(5):1198–1204. doi: 10.1093/nar/26.5.1198

Mutational analysis of the tRNA3Lys/HIV-1 RNA (primer/template) complex.

C Isel 1, G Keith 1, B Ehresmann 1, C Ehresmann 1, R Marquet 1
PMCID: PMC147409  PMID: 9469827

Abstract

Retroviruses use a specific tRNA, whose 3' end is complementary to the 18 nucleotides of the primer binding site (PBS), to prime reverse transcription. Previous work has shown that initiation of HIV-1 reverse transcription is a specific process, in contrast with the subsequent elongation phase. HIV-1 reverse transcriptase (RT) specifically recognizes the complex formed by the viral RNA and tRNA3Lys. We previously proposed a secondary structure model of this complex based on chemical and enzymatic probing. In this model, tRNA3Lysextensively interacts with the genomic RNA. Here, we have combined site-directed mutagenesis and structural probing to test crucial aspects of this model. We found that the complex interactions between tRNA3Lysand HIV-1 RNA, and the intra-molecular rearrangements did not depend on the presence of upstream and downstream viral sequences. Indeed, a short RNA template, encompassing nucleotides 123-217 of the HIV-1 Mal genome, was able, together with the primer tRNA, to adopt the same structure as longer viral RNA fragments. This model primer/template is thus amenable to detailed structural and functional studies. The probing data obtained on the tRNA3Lys/mutant viral RNA complexes support the previously proposed model. Furthermore, they indicate that destroying the complementarity between the anticodon of tRNA3Lysand the so-called viral 'A-rich loop' destabilizes all four helices of the extended tRNA3Lys/HIV-1 RNA interactions.

Full Text

The Full Text of this article is available as a PDF (442.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiyar A., Cobrinik D., Ge Z., Kung H. J., Leis J. Interaction between retroviral U5 RNA and the T psi C loop of the tRNA(Trp) primer is required for efficient initiation of reverse transcription. J Virol. 1992 Apr;66(4):2464–2472. doi: 10.1128/jvi.66.4.2464-2472.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aiyar A., Ge Z., Leis J. A specific orientation of RNA secondary structures is required for initiation of reverse transcription. J Virol. 1994 Feb;68(2):611–618. doi: 10.1128/jvi.68.2.611-618.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arts E. J., Ghosh M., Jacques P. S., Ehresmann B., Le Grice S. F. Restoration of tRNA3Lys-primed(-)-strand DNA synthesis to an HIV-1 reverse transcriptase mutant with extended tRNAs. Implications for retroviral replication. J Biol Chem. 1996 Apr 12;271(15):9054–9061. doi: 10.1074/jbc.271.15.9054. [DOI] [PubMed] [Google Scholar]
  4. Arts E. J., Stetor S. R., Li X., Rausch J. W., Howard K. J., Ehresmann B., North T. W., Wöhrl B. M., Goody R. S., Wainberg M. A. Initiation of (-) strand DNA synthesis from tRNA(3Lys) on lentiviral RNAs: implications of specific HIV-1 RNA-tRNA(3Lys) interactions inhibiting primer utilization by retroviral reverse transcriptases. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10063–10068. doi: 10.1073/pnas.93.19.10063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baltimore D. RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature. 1970 Jun 27;226(5252):1209–1211. doi: 10.1038/2261209a0. [DOI] [PubMed] [Google Scholar]
  6. Baudin F., Marquet R., Isel C., Darlix J. L., Ehresmann B., Ehresmann C. Functional sites in the 5' region of human immunodeficiency virus type 1 RNA form defined structural domains. J Mol Biol. 1993 Jan 20;229(2):382–397. doi: 10.1006/jmbi.1993.1041. [DOI] [PubMed] [Google Scholar]
  7. Berkhout B. The primer binding site on the RNA genome of human and simian immunodeficiency viruses is flanked by an upstream hairpin structure. Nucleic Acids Res. 1997 Oct 15;25(20):4013–4017. doi: 10.1093/nar/25.20.4013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cobrinik D., Aiyar A., Ge Z., Katzman M., Huang H., Leis J. Overlapping retrovirus U5 sequence elements are required for efficient integration and initiation of reverse transcription. J Virol. 1991 Jul;65(7):3864–3872. doi: 10.1128/jvi.65.7.3864-3872.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cobrinik D., Soskey L., Leis J. A retroviral RNA secondary structure required for efficient initiation of reverse transcription. J Virol. 1988 Oct;62(10):3622–3630. doi: 10.1128/jvi.62.10.3622-3630.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Das A. T., Klaver B., Berkhout B. Reduced replication of human immunodeficiency virus type 1 mutants that use reverse transcription primers other than the natural tRNA(3Lys). J Virol. 1995 May;69(5):3090–3097. doi: 10.1128/jvi.69.5.3090-3097.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ehresmann C., Baudin F., Mougel M., Romby P., Ebel J. P., Ehresmann B. Probing the structure of RNAs in solution. Nucleic Acids Res. 1987 Nov 25;15(22):9109–9128. doi: 10.1093/nar/15.22.9109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Friant S., Heyman T., Poch O., Wilhelm M., Wilhelm F. X. Sequence comparison of the Ty1 and Ty2 elements of the yeast genome supports the structural model of the tRNAiMet-Ty1 RNA reverse transcription initiation complex. Yeast. 1997 Jun 15;13(7):639–645. doi: 10.1002/(SICI)1097-0061(19970615)13:7<639::AID-YEA143>3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
  13. Friant S., Heyman T., Wilhelm M. L., Wilhelm F. X. Extended interactions between the primer tRNAi(Met) and genomic RNA of the yeast Ty1 retrotransposon. Nucleic Acids Res. 1996 Feb 1;24(3):441–449. doi: 10.1093/nar/24.3.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gilboa E., Mitra S. W., Goff S., Baltimore D. A detailed model of reverse transcription and tests of crucial aspects. Cell. 1979 Sep;18(1):93–100. doi: 10.1016/0092-8674(79)90357-x. [DOI] [PubMed] [Google Scholar]
  15. Huang Y., Mak J., Cao Q., Li Z., Wainberg M. A., Kleiman L. Incorporation of excess wild-type and mutant tRNA(3Lys) into human immunodeficiency virus type 1. J Virol. 1994 Dec;68(12):7676–7683. doi: 10.1128/jvi.68.12.7676-7683.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Huang Y., Shalom A., Li Z., Wang J., Mak J., Wainberg M. A., Kleiman L. Effects of modifying the tRNA(3Lys) anticodon on the initiation of human immunodeficiency virus type 1 reverse transcription. J Virol. 1996 Jul;70(7):4700–4706. doi: 10.1128/jvi.70.7.4700-4706.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Isel C., Ehresmann C., Keith G., Ehresmann B., Marquet R. Initiation of reverse transcription of HIV-1: secondary structure of the HIV-1 RNA/tRNA(3Lys) (template/primer). J Mol Biol. 1995 Mar 24;247(2):236–250. doi: 10.1006/jmbi.1994.0136. [DOI] [PubMed] [Google Scholar]
  18. Isel C., Lanchy J. M., Le Grice S. F., Ehresmann C., Ehresmann B., Marquet R. Specific initiation and switch to elongation of human immunodeficiency virus type 1 reverse transcription require the post-transcriptional modifications of primer tRNA3Lys. EMBO J. 1996 Feb 15;15(4):917–924. [PMC free article] [PubMed] [Google Scholar]
  19. Isel C., Marquet R., Keith G., Ehresmann C., Ehresmann B. Modified nucleotides of tRNA(3Lys) modulate primer/template loop-loop interaction in the initiation complex of HIV-1 reverse transcription. J Biol Chem. 1993 Dec 5;268(34):25269–25272. [PubMed] [Google Scholar]
  20. Kang S. M., Zhang Z., Morrow C. D. Identification of a sequence within U5 required for human immunodeficiency virus type 1 to stably maintain a primer binding site complementary to tRNA(Met). J Virol. 1997 Jan;71(1):207–217. doi: 10.1128/jvi.71.1.207-217.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lanchy J. M., Ehresmann C., Le Grice S. F., Ehresmann B., Marquet R. Binding and kinetic properties of HIV-1 reverse transcriptase markedly differ during initiation and elongation of reverse transcription. EMBO J. 1996 Dec 16;15(24):7178–7187. [PMC free article] [PubMed] [Google Scholar]
  22. Leonard G. A., McAuley-Hecht K. E., Ebel S., Lough D. M., Brown T., Hunter W. N. Crystal and molecular structure of r(CGCGAAUUAGCG): an RNA duplex containing two G(anti).A(anti) base pairs. Structure. 1994 Jun 15;2(6):483–494. doi: 10.1016/S0969-2126(00)00049-6. [DOI] [PubMed] [Google Scholar]
  23. Li X., Mak J., Arts E. J., Gu Z., Kleiman L., Wainberg M. A., Parniak M. A. Effects of alterations of primer-binding site sequences on human immunodeficiency virus type 1 replication. J Virol. 1994 Oct;68(10):6198–6206. doi: 10.1128/jvi.68.10.6198-6206.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Li Y., Zhang Z., Wakefield J. K., Kang S. M., Morrow C. D. Nucleotide substitutions within U5 are critical for efficient reverse transcription of human immunodeficiency virus type 1 with a primer binding site complementary to tRNA(His). J Virol. 1997 Sep;71(9):6315–6322. doi: 10.1128/jvi.71.9.6315-6322.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Liang C., Li X., Rong L., Inouye P., Quan Y., Kleiman L., Wainberg M. A. The importance of the A-rich loop in human immunodeficiency virus type 1 reverse transcription and infectivity. J Virol. 1997 Aug;71(8):5750–5757. doi: 10.1128/jvi.71.8.5750-5757.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Marquet R., Baudin F., Gabus C., Darlix J. L., Mougel M., Ehresmann C., Ehresmann B. Dimerization of human immunodeficiency virus (type 1) RNA: stimulation by cations and possible mechanism. Nucleic Acids Res. 1991 May 11;19(9):2349–2357. doi: 10.1093/nar/19.9.2349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Marquet R., Isel C., Ehresmann C., Ehresmann B. tRNAs as primer of reverse transcriptases. Biochimie. 1995;77(1-2):113–124. doi: 10.1016/0300-9084(96)88114-4. [DOI] [PubMed] [Google Scholar]
  28. Oude Essink B. B., Das A. T., Berkhout B. HIV-1 reverse transcriptase discriminates against non-self tRNA primers. J Mol Biol. 1996 Nov 29;264(2):243–254. doi: 10.1006/jmbi.1996.0638. [DOI] [PubMed] [Google Scholar]
  29. Paillart J. C., Marquet R., Skripkin E., Ehresmann B., Ehresmann C. Mutational analysis of the bipartite dimer linkage structure of human immunodeficiency virus type 1 genomic RNA. J Biol Chem. 1994 Nov 4;269(44):27486–27493. [PubMed] [Google Scholar]
  30. Paillart J. C., Marquet R., Skripkin E., Ehresmann C., Ehresmann B. Dimerization of retroviral genomic RNAs: structural and functional implications. Biochimie. 1996;78(7):639–653. doi: 10.1016/s0300-9084(96)80010-1. [DOI] [PubMed] [Google Scholar]
  31. Skripkin E., Isel C., Marquet R., Ehresmann B., Ehresmann C. Psoralen crosslinking between human immunodeficiency virus type 1 RNA and primer tRNA3(Lys). Nucleic Acids Res. 1996 Feb 1;24(3):509–514. doi: 10.1093/nar/24.3.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Steinberg S., Misch A., Sprinzl M. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 1993 Jul 1;21(13):3011–3015. doi: 10.1093/nar/21.13.3011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Temin H. M., Mizutani S. RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature. 1970 Jun 27;226(5252):1211–1213. doi: 10.1038/2261211a0. [DOI] [PubMed] [Google Scholar]
  34. Wakefield J. K., Kang S. M., Morrow C. D. Construction of a type 1 human immunodeficiency virus that maintains a primer binding site complementary to tRNA(His). J Virol. 1996 Feb;70(2):966–975. doi: 10.1128/jvi.70.2.966-975.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wakefield J. K., Wolf A. G., Morrow C. D. Human immunodeficiency virus type 1 can use different tRNAs as primers for reverse transcription but selectively maintains a primer binding site complementary to tRNA(3Lys). J Virol. 1995 Oct;69(10):6021–6029. doi: 10.1128/jvi.69.10.6021-6029.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wilhelm M., Wilhelm F. X., Keith G., Agoutin B., Heyman T. Yeast Ty1 retrotransposon: the minus-strand primer binding site and a cis-acting domain of the Ty1 RNA are both important for packaging of primer tRNA inside virus-like particles. Nucleic Acids Res. 1994 Nov 11;22(22):4560–4565. doi: 10.1093/nar/22.22.4560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zhang Z., Kang S. M., LeBlanc A., Hajduk S. L., Morrow C. D. Nucleotide sequences within the U5 region of the viral RNA genome are the major determinants for an human immunodeficiency virus type 1 to maintain a primer binding site complementary to tRNA(His). Virology. 1996 Dec 15;226(2):306–317. doi: 10.1006/viro.1996.0658. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES