Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Mar 15;26(6):1414–1420. doi: 10.1093/nar/26.6.1414

A plasmid expression system for quantitative in vivo biotinylation of thioredoxin fusion proteins in Escherichia coli.

P A Smith 1, B C Tripp 1, E A DiBlasio-Smith 1, Z Lu 1, E R LaVallie 1, J M McCoy 1
PMCID: PMC147411  PMID: 9490786

Abstract

The high affinity binding interaction of biotin to avidin or streptavidin has been used widely in biochemistry and molecular biology, often in sensitive protein detection or protein capture applications. However, in vitro chemical techniques for protein biotinylation are not always successful, with some common problems being a lack of reaction specificity, inactivation of amino acid residues critical for protein function and low levels of biotin incorporation. This report describes an improved expression system for the highly specific and quantitative in vivo biotinylation of fusion proteins. A short 'biotinylation peptide', described previously by Schatz, is linked to the N-terminus of Escherichia coli thioredoxin (TrxA) to form a new protein, called BIOTRX. The 'biotinylation peptide' serves as an in vivo substrate mimic for E. coli biotin holoenzyme synthetase (BirA), an enzyme which usually performs highly selective biotinylation of E.coli biotin carboxyl carrier protein (BCCP). A plasmid expression vector carrying the BIOTRX and birA genes arranged as a bacterial operon can be used to obtain high level production of soluble BIOTRX and BirA proteins and, under appropriate culture conditions, BIOTRX protein produced by this system is completely biotinylated. Fusions of BIOTRX to other proteins or peptides, whether these polypeptides are linked to the C-terminus or inserted into the BIOTRX active site loop, are also quantitatively biotinylated. Both types of BIOTRX fusion can be captured efficiently on avidin/streptavidin media for purification purposes or to facilitate interaction assays. We illustrate the utility of the system by measurements of antibody and soluble receptor protein binding to BIOTRX fusions immobilized on streptavidin-conjugated BIAcore chips.

Full Text

The Full Text of this article is available as a PDF (267.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barker D. F., Campbell A. M. Genetic and biochemical characterization of the birA gene and its product: evidence for a direct role of biotin holoenzyme synthetase in repression of the biotin operon in Escherichia coli. J Mol Biol. 1981 Mar 15;146(4):469–492. doi: 10.1016/0022-2836(81)90043-7. [DOI] [PubMed] [Google Scholar]
  2. Barker D. F., Campbell A. M. The birA gene of Escherichia coli encodes a biotin holoenzyme synthetase. J Mol Biol. 1981 Mar 15;146(4):451–467. doi: 10.1016/0022-2836(81)90042-5. [DOI] [PubMed] [Google Scholar]
  3. Bayer E. A., Wilchek M. Protein biotinylation. Methods Enzymol. 1990;184:138–160. doi: 10.1016/0076-6879(90)84268-l. [DOI] [PubMed] [Google Scholar]
  4. Colas P., Cohen B., Jessen T., Grishina I., McCoy J., Brent R. Genetic selection of peptide aptamers that recognize and inhibit cyclin-dependent kinase 2. Nature. 1996 Apr 11;380(6574):548–550. doi: 10.1038/380548a0. [DOI] [PubMed] [Google Scholar]
  5. Cronan J. E., Jr Biotination of proteins in vivo. A post-translational modification to label, purify, and study proteins. J Biol Chem. 1990 Jun 25;265(18):10327–10333. [PubMed] [Google Scholar]
  6. Fall R. R. Analysis of microbial biotin proteins. Methods Enzymol. 1979;62:390–398. doi: 10.1016/0076-6879(79)62246-2. [DOI] [PubMed] [Google Scholar]
  7. Green N. M. Avidin. Adv Protein Chem. 1975;29:85–133. doi: 10.1016/s0065-3233(08)60411-8. [DOI] [PubMed] [Google Scholar]
  8. Green N. M. Thermodynamics of the binding of biotin and some analogues by avidin. Biochem J. 1966 Dec;101(3):774–780. doi: 10.1042/bj1010774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Heney G., Orr G. A. The purification of avidin and its derivatives on 2-iminobiotin-6-aminohexyl-Sepharose 4B. Anal Biochem. 1981 Jun;114(1):92–96. doi: 10.1016/0003-2697(81)90456-5. [DOI] [PubMed] [Google Scholar]
  10. Henrikson K. P., Allen S. H., Maloy W. L. An avidin monomer affinity column for the purification of biotin-containing enzymes. Anal Biochem. 1979 Apr 15;94(2):366–370. doi: 10.1016/0003-2697(79)90374-9. [DOI] [PubMed] [Google Scholar]
  11. Howard P. K., Shaw J., Otsuka A. J. Nucleotide sequence of the birA gene encoding the biotin operon repressor and biotin holoenzyme synthetase functions of Escherichia coli. Gene. 1985;35(3):321–331. doi: 10.1016/0378-1119(85)90011-3. [DOI] [PubMed] [Google Scholar]
  12. Katti S. K., LeMaster D. M., Eklund H. Crystal structure of thioredoxin from Escherichia coli at 1.68 A resolution. J Mol Biol. 1990 Mar 5;212(1):167–184. doi: 10.1016/0022-2836(90)90313-B. [DOI] [PubMed] [Google Scholar]
  13. LaVallie E. R., DiBlasio E. A., Kovacic S., Grant K. L., Schendel P. F., McCoy J. M. A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Biotechnology (N Y) 1993 Feb;11(2):187–193. doi: 10.1038/nbt0293-187. [DOI] [PubMed] [Google Scholar]
  14. Livnah O., Bayer E. A., Wilchek M., Sussman J. L. Three-dimensional structures of avidin and the avidin-biotin complex. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5076–5080. doi: 10.1073/pnas.90.11.5076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lu Z., DiBlasio-Smith E. A., Grant K. L., Warne N. W., LaVallie E. R., Collins-Racie L. A., Follettie M. T., Williamson M. J., McCoy J. M. Histidine patch thioredoxins. Mutant forms of thioredoxin with metal chelating affinity that provide for convenient purifications of thioredoxin fusion proteins. J Biol Chem. 1996 Mar 1;271(9):5059–5065. [PubMed] [Google Scholar]
  16. Lu Z., Murray K. S., Van Cleave V., LaVallie E. R., Stahl M. L., McCoy J. M. Expression of thioredoxin random peptide libraries on the Escherichia coli cell surface as functional fusions to flagellin: a system designed for exploring protein-protein interactions. Biotechnology (N Y) 1995 Apr;13(4):366–372. doi: 10.1038/nbt0495-366. [DOI] [PubMed] [Google Scholar]
  17. Orr G. A. The use of the 2-iminobiotin-avidin interaction for the selective retrieval of labeled plasma membrane components. J Biol Chem. 1981 Jan 25;256(2):761–766. [PubMed] [Google Scholar]
  18. Samols D., Thornton C. G., Murtif V. L., Kumar G. K., Haase F. C., Wood H. G. Evolutionary conservation among biotin enzymes. J Biol Chem. 1988 May 15;263(14):6461–6464. [PubMed] [Google Scholar]
  19. Schatz P. J. Use of peptide libraries to map the substrate specificity of a peptide-modifying enzyme: a 13 residue consensus peptide specifies biotinylation in Escherichia coli. Biotechnology (N Y) 1993 Oct;11(10):1138–1143. doi: 10.1038/nbt1093-1138. [DOI] [PubMed] [Google Scholar]
  20. Tsao K. L., DeBarbieri B., Michel H., Waugh D. S. A versatile plasmid expression vector for the production of biotinylated proteins by site-specific, enzymatic modification in Escherichia coli. Gene. 1996 Feb 22;169(1):59–64. doi: 10.1016/0378-1119(95)00762-8. [DOI] [PubMed] [Google Scholar]
  21. Wilchek M., Bayer E. A. Introduction to avidin-biotin technology. Methods Enzymol. 1990;184:5–13. doi: 10.1016/0076-6879(90)84256-g. [DOI] [PubMed] [Google Scholar]
  22. Yamano N., Kawata Y., Kojima H., Yoda K., Yamasaki M. In vivo biotinylation of fusion proteins expressed in Escherichia coli with a sequence of Propionibacterium freudenreichii transcarboxylase 1.3S biotin subunit. Biosci Biotechnol Biochem. 1992 Jul;56(7):1017–1026. doi: 10.1271/bbb.56.1017. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES