Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Mar 15;26(6):1390–1395. doi: 10.1093/nar/26.6.1390

Wheat cytoplasmic arginine tRNA isoacceptor with a U*CG anticodon is an efficient UGA suppressor in vitro.

M Baum 1, H Beier 1
PMCID: PMC147420  PMID: 9490782

Abstract

Many RNA viruses express part of their genomic information by read-through over internal termination codons. We have recently characterized tobacco cytoplasmic (cyt) and chloroplast (chl) tRNACmCATrp and tRNAGCACys as natural suppressor tRNAs that are able to read the leaky UGA codon in RNA-1 of tobacco rattle virus, albeit with different efficiencies. Here we have identified a third natural UGA suppressor in plants. We have purified and sequenced four cyt tRNAArg isoacceptors with ICG, CCG, U*CG and CCU anticodons from wheat germ. With the exception of tRNAICGArg, these are the first sequences of plant tRNAsArg. In order to study the potential suppressor activity of wheat tRNAsArg we have used in vitro synthesized mRNA transcripts in which different viral read-through regions had been placed. In vitro translation was carried out in a homologous wheat germ extract. We found that tRNAU*CGArg is an efficient UGA suppressor in vitro, whereas the other three tRNAArg isoacceptors exhibit no or very low suppressor activity. Interaction of tRNAU*CGArg with the UGA codon requires a G:U base pair at the third anticodon position. This is the first time that an arginine-accepting tRNA has been characterized as a natural UGA suppressor. A remarkable feature of cyt tRNAU*CGArg is its ability to misread the UGA at the end of the coat protein cistron in RNA-1 of pea enation mosaic virus, which is not accomplished by cyt tRNACmCATrp or cyt tRNAGCACys, due to an unfavourable codon context.

Full Text

The Full Text of this article is available as a PDF (147.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barciszewska M. Z., Keith G., Kubli E., Barciszewski J. The primary structure of wheat germ tRNAArg--the substrate for arginyl-tRNAArg:protein transferase. Biochimie. 1986 Mar;68(2):319–323. doi: 10.1016/s0300-9084(86)80029-3. [DOI] [PubMed] [Google Scholar]
  2. Beier H., Barciszewska M., Krupp G., Mitnacht R., Gross H. J. UAG readthrough during TMV RNA translation: isolation and sequence of two tRNAs with suppressor activity from tobacco plants. EMBO J. 1984 Feb;3(2):351–356. doi: 10.1002/j.1460-2075.1984.tb01810.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Crick F. H. Codon--anticodon pairing: the wobble hypothesis. J Mol Biol. 1966 Aug;19(2):548–555. doi: 10.1016/s0022-2836(66)80022-0. [DOI] [PubMed] [Google Scholar]
  4. Dietrich A., Weil J. H., Maréchal-Drouard L. Nuclear-encoded transfer RNAs in plant mitochondria. Annu Rev Cell Biol. 1992;8:115–131. doi: 10.1146/annurev.cb.08.110192.000555. [DOI] [PubMed] [Google Scholar]
  5. Ericson J. U., Björk G. R. tRNA anticodons with the modified nucleoside 2-methylthio-N6-(4-hydroxyisopentenyl)adenosine distinguish between bases 3' of the codon. J Mol Biol. 1991 Apr 5;218(3):509–516. doi: 10.1016/0022-2836(91)90697-5. [DOI] [PubMed] [Google Scholar]
  6. Feng Y. X., Yuan H., Rein A., Levin J. G. Bipartite signal for read-through suppression in murine leukemia virus mRNA: an eight-nucleotide purine-rich sequence immediately downstream of the gag termination codon followed by an RNA pseudoknot. J Virol. 1992 Aug;66(8):5127–5132. doi: 10.1128/jvi.66.8.5127-5132.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goelet P., Lomonossoff G. P., Butler P. J., Akam M. E., Gait M. J., Karn J. Nucleotide sequence of tobacco mosaic virus RNA. Proc Natl Acad Sci U S A. 1982 Oct;79(19):5818–5822. doi: 10.1073/pnas.79.19.5818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Grosjean H., Chantrenne H. On codon- anticodon interactions. Mol Biol Biochem Biophys. 1980;32:347–367. doi: 10.1007/978-3-642-81503-4_27. [DOI] [PubMed] [Google Scholar]
  9. Hamilton W. D., Boccara M., Robinson D. J., Baulcombe D. C. The complete nucleotide sequence of tobacco rattle virus RNA-1. J Gen Virol. 1987 Oct;68(Pt 10):2563–2575. doi: 10.1099/0022-1317-68-10-2563. [DOI] [PubMed] [Google Scholar]
  10. Hatfield D., Rice M. Patterns of codon recognition by isoacceptor aminoacyl-tRNAs from wheat germ. Nucleic Acids Res. 1978 Oct;5(10):3491–3502. doi: 10.1093/nar/5.10.3491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jukes T. H. Possibilities for the evolution of the genetic code from a preceding form. Nature. 1973 Nov 2;246(5427):22–26. doi: 10.1038/246022a0. [DOI] [PubMed] [Google Scholar]
  12. Keith G. Mobilities of modified ribonucleotides on two-dimensional cellulose thin-layer chromatography. Biochimie. 1995;77(1-2):142–144. doi: 10.1016/0300-9084(96)88118-1. [DOI] [PubMed] [Google Scholar]
  13. Keith G. The primary structures of two arginine tRNAs (anticodons C-C-U and mcm5a2U-C-psi) and of glutamine tRNA (anticodon C-U-G) from bovine liver. Nucleic Acids Res. 1984 Mar 12;12(5):2543–2547. doi: 10.1093/nar/12.5.2543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Komine Y., Adachi T., Inokuchi H., Ozeki H. Genomic organization and physical mapping of the transfer RNA genes in Escherichia coli K12. J Mol Biol. 1990 Apr 20;212(4):579–598. doi: 10.1016/0022-2836(90)90224-A. [DOI] [PubMed] [Google Scholar]
  15. Kumar R., Maréchal-Drouard L., Akama K., Small I. Striking differences in mitochondrial tRNA import between different plant species. Mol Gen Genet. 1996 Sep 25;252(4):404–411. doi: 10.1007/BF02173005. [DOI] [PubMed] [Google Scholar]
  16. Li G. P., Rice C. M. Mutagenesis of the in-frame opal termination codon preceding nsP4 of Sindbis virus: studies of translational readthrough and its effect on virus replication. J Virol. 1989 Mar;63(3):1326–1337. doi: 10.1128/jvi.63.3.1326-1337.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Maier R. M., Neckermann K., Igloi G. L., Kössel H. Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol. 1995 Sep 1;251(5):614–628. doi: 10.1006/jmbi.1995.0460. [DOI] [PubMed] [Google Scholar]
  18. Mayo M. A. Polypeptides induced by tobacco rattle virus during multiplication in tobacco protoplasts. Intervirology. 1982;17(4):240–246. doi: 10.1159/000149294. [DOI] [PubMed] [Google Scholar]
  19. Murray E. E., Lotzer J., Eberle M. Codon usage in plant genes. Nucleic Acids Res. 1989 Jan 25;17(2):477–498. doi: 10.1093/nar/17.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pfitzinger H., Weil J. H., Pillay D. T., Guillemaut P. Codon recognition mechanisms in plant chloroplasts. Plant Mol Biol. 1990 May;14(5):805–814. doi: 10.1007/BF00016513. [DOI] [PubMed] [Google Scholar]
  21. Rohde W., Gramstat A., Schmitz J., Tacke E., Prüfer D. Plant viruses as model systems for the study of non-canonical translation mechanisms in higher plants. J Gen Virol. 1994 Sep;75(Pt 9):2141–2149. doi: 10.1099/0022-1317-75-9-2141. [DOI] [PubMed] [Google Scholar]
  22. Schüll C., Beier H. Three Tetrahymena tRNA(Gln) isoacceptors as tools for studying unorthodox codon recognition and codon context effects during protein synthesis in vitro. Nucleic Acids Res. 1994 Jun 11;22(11):1974–1980. doi: 10.1093/nar/22.11.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sissler M., Giegé R., Florentz C. Arginine aminoacylation identity is context-dependent and ensured by alternate recognition sets in the anticodon loop of accepting tRNA transcripts. EMBO J. 1996 Sep 16;15(18):5069–5076. [PMC free article] [PubMed] [Google Scholar]
  24. Skuzeski J. M., Nichols L. M., Gesteland R. F., Atkins J. F. The signal for a leaky UAG stop codon in several plant viruses includes the two downstream codons. J Mol Biol. 1991 Mar 20;218(2):365–373. doi: 10.1016/0022-2836(91)90718-l. [DOI] [PubMed] [Google Scholar]
  25. Sprinzl M., Steegborn C., Hübel F., Steinberg S. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 1996 Jan 1;24(1):68–72. doi: 10.1093/nar/24.1.68. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stanley J., Vassilenko S. A different approach to RNA sequencing. Nature. 1978 Jul 6;274(5666):87–89. doi: 10.1038/274087a0. [DOI] [PubMed] [Google Scholar]
  27. Takkinen K. Complete nucleotide sequence of the nonstructural protein genes of Semliki Forest virus. Nucleic Acids Res. 1986 Jul 25;14(14):5667–5682. doi: 10.1093/nar/14.14.5667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tsudzuki J., Ito S., Tsudzuki T., Wakasugi T., Sugiura M. A new gene encoding tRNA(Pro) (GGG) is present in the chloroplast genome of black pine: a compilation of 32 tRNA genes from black pine chloroplasts. Curr Genet. 1994 Aug;26(2):153–158. doi: 10.1007/BF00313804. [DOI] [PubMed] [Google Scholar]
  29. Urban C., Beier H. Cysteine tRNAs of plant origin as novel UGA suppressors. Nucleic Acids Res. 1995 Nov 25;23(22):4591–4597. doi: 10.1093/nar/23.22.4591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Urban C., Zerfass K., Fingerhut C., Beier H. UGA suppression by tRNACmCATrp occurs in diverse virus RNAs due to a limited influence of the codon context. Nucleic Acids Res. 1996 Sep 1;24(17):3424–3430. doi: 10.1093/nar/24.17.3424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Valle R. P., Drugeon G., Devignes-Morch M. D., Legocki A. B., Haenni A. L. Codon context effect in virus translational readthrough. A study in vitro of the determinants of TMV and Mo-MuLV amber suppression. FEBS Lett. 1992 Jul 20;306(2-3):133–139. doi: 10.1016/0014-5793(92)80984-o. [DOI] [PubMed] [Google Scholar]
  32. Valle R. P., Morch M. D. Stop making sense: or Regulation at the level of termination in eukaryotic protein synthesis. FEBS Lett. 1988 Aug 1;235(1-2):1–15. doi: 10.1016/0014-5793(88)81225-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Veronico P., Gallerani R., Ceci L. R. Compilation and classification of higher plant mitochondrial tRNA genes. Nucleic Acids Res. 1996 Jun 15;24(12):2199–2203. doi: 10.1093/nar/24.12.2199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wandelt C., Feix G. Sequence of a 21 kd zein gene from maize containing an in-frame stop codon. Nucleic Acids Res. 1989 Mar 25;17(6):2354–2354. doi: 10.1093/nar/17.6.2354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Weissenbach J., Dirheimer G. Pairing properties of the methylester of 5-carboxymethyl uridine in the wobble position of yeast tRNA3Arg. Biochim Biophys Acta. 1978 May 23;518(3):530–534. doi: 10.1016/0005-2787(78)90171-5. [DOI] [PubMed] [Google Scholar]
  36. Zerfass K., Beier H. Pseudouridine in the anticodon G psi A of plant cytoplasmic tRNA(Tyr) is required for UAG and UAA suppression in the TMV-specific context. Nucleic Acids Res. 1992 Nov 25;20(22):5911–5918. doi: 10.1093/nar/20.22.5911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zerfass K., Beier H. The leaky UGA termination codon of tobacco rattle virus RNA is suppressed by tobacco chloroplast and cytoplasmic tRNAs(Trp) with CmCA anticodon. EMBO J. 1992 Nov;11(11):4167–4173. doi: 10.1002/j.1460-2075.1992.tb05510.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES