Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Mar 15;26(6):1408–1413. doi: 10.1093/nar/26.6.1408

Single chain dimers of MASH-1 bind DNA with enhanced affinity.

M Sieber 1, R K Allemann 1
PMCID: PMC147425  PMID: 9490785

Abstract

By designing recombinant genes containing tandem copies of the coding region of the BHLH domain of MASH-1 (MASH-BHLH) with intervening DNA sequences encoding linker sequences of 8 or 17 amino acids, the two subunits of the MASH dimer have been connected to form the single chain dimers MM8 and MM17. Despite the long and flexible linkers which connect the C-terminus of the first BHLH subunit to the N-terminus of the second, a distance of approximately 55 A, the single chain dimers could be produced in Escherichia coli at high levels. MM8 and MM17 were monomeric and no 'cross-folding' of the subunits was observed. CD spectroscopy revealed that, like wild-type MASH-BHLH, MM8 and MM17 adopt only partly folded structures in the absence of DNA, but undergo a folding transition to a mainly alpha-helical conformation on DNA binding. Titrations by electrophoretic mobility shift assays revealed that the affinity of the single chain dimers for E box-containing DNA sequences was increased approximately 10-fold when compared with wild-type MASH-BHLH. On the other hand, the affinity for heterologous DNA sequences was increased only 5-fold. Therefore, the introduction of the peptide linker led to a 4-fold increase in DNA binding specificity from -0.14 to -0.57 kcal/mol.

Full Text

The Full Text of this article is available as a PDF (641.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anthony-Cahill S. J., Benfield P. A., Fairman R., Wasserman Z. R., Brenner S. L., Stafford W. F., 3rd, Altenbach C., Hubbell W. L., DeGrado W. F. Molecular characterization of helix-loop-helix peptides. Science. 1992 Feb 21;255(5047):979–983. doi: 10.1126/science.1312255. [DOI] [PubMed] [Google Scholar]
  2. Bizub D., Weber I. T., Cameron C. E., Leis J. P., Skalka A. M. A range of catalytic efficiencies with avian retroviral protease subunits genetically linked to form single polypeptide chains. J Biol Chem. 1991 Mar 15;266(8):4951–4958. [PubMed] [Google Scholar]
  3. Burton D. R., Barbas C. F., 3rd Human antibodies from combinatorial libraries. Adv Immunol. 1994;57:191–280. doi: 10.1016/s0065-2776(08)60674-4. [DOI] [PubMed] [Google Scholar]
  4. Buskin J. N., Hauschka S. D. Identification of a myocyte nuclear factor that binds to the muscle-specific enhancer of the mouse muscle creatine kinase gene. Mol Cell Biol. 1989 Jun;9(6):2627–2640. doi: 10.1128/mcb.9.6.2627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Compton L. A., Johnson W. C., Jr Analysis of protein circular dichroism spectra for secondary structure using a simple matrix multiplication. Anal Biochem. 1986 May 15;155(1):155–167. doi: 10.1016/0003-2697(86)90241-1. [DOI] [PubMed] [Google Scholar]
  6. Davis R. L., Cheng P. F., Lassar A. B., Weintraub H. The MyoD DNA binding domain contains a recognition code for muscle-specific gene activation. Cell. 1990 Mar 9;60(5):733–746. doi: 10.1016/0092-8674(90)90088-v. [DOI] [PubMed] [Google Scholar]
  7. Davis R. L., Weintraub H., Lassar A. B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987 Dec 24;51(6):987–1000. doi: 10.1016/0092-8674(87)90585-x. [DOI] [PubMed] [Google Scholar]
  8. Ellenberger T., Fass D., Arnaud M., Harrison S. C. Crystal structure of transcription factor E47: E-box recognition by a basic region helix-loop-helix dimer. Genes Dev. 1994 Apr 15;8(8):970–980. doi: 10.1101/gad.8.8.970. [DOI] [PubMed] [Google Scholar]
  9. Fairman R., Beran-Steed R. K., Anthony-Cahill S. J., Lear J. D., Stafford W. F., 3rd, DeGrado W. F., Benfield P. A., Brenner S. L. Multiple oligomeric states regulate the DNA binding of helix-loop-helix peptides. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10429–10433. doi: 10.1073/pnas.90.22.10429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fairman R., Beran-Steed R. K., Handel T. M. Heteronuclear (1H, 13C, 15N) NMR assignments and secondary structure of the basic region-helix-loop-helix domain of E47. Protein Sci. 1997 Jan;6(1):175–184. doi: 10.1002/pro.5560060120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. German M. S., Blanar M. A., Nelson C., Moss L. G., Rutter W. J. Two related helix-loop-helix proteins participate in separate cell-specific complexes that bind the insulin enhancer. Mol Endocrinol. 1991 Feb;5(2):292–299. doi: 10.1210/mend-5-2-292. [DOI] [PubMed] [Google Scholar]
  12. Greenfield N., Fasman G. D. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry. 1969 Oct;8(10):4108–4116. doi: 10.1021/bi00838a031. [DOI] [PubMed] [Google Scholar]
  13. Hallewell R. A., Laria I., Tabrizi A., Carlin G., Getzoff E. D., Tainer J. A., Cousens L. S., Mullenbach G. T. Genetically engineered polymers of human CuZn superoxide dismutase. Biochemistry and serum half-lives. J Biol Chem. 1989 Mar 25;264(9):5260–5268. [PubMed] [Google Scholar]
  14. Huston J. S., Mudgett-Hunter M., Tai M. S., McCartney J., Warren F., Haber E., Oppermann H. Protein engineering of single-chain Fv analogs and fusion proteins. Methods Enzymol. 1991;203:46–88. doi: 10.1016/0076-6879(91)03005-2. [DOI] [PubMed] [Google Scholar]
  15. Jamieson A. C., Kim S. H., Wells J. A. In vitro selection of zinc fingers with altered DNA-binding specificity. Biochemistry. 1994 May 17;33(19):5689–5695. doi: 10.1021/bi00185a004. [DOI] [PubMed] [Google Scholar]
  16. Johnson S., Bird R. E. Construction of single-chain Fv derivatives monoclonal antibodies and their production in Escherichia coli. Methods Enzymol. 1991;203:88–98. doi: 10.1016/0076-6879(91)03006-3. [DOI] [PubMed] [Google Scholar]
  17. Kim S. H., Kang C. H., Kim R., Cho J. M., Lee Y. B., Lee T. K. Redesigning a sweet protein: increased stability and renaturability. Protein Eng. 1989 Aug;2(8):571–575. doi: 10.1093/protein/2.8.571. [DOI] [PubMed] [Google Scholar]
  18. Künne A. G., Allemann R. K. Covalently linking BHLH subunits of MASH-1 increases specificity of DNA binding. Biochemistry. 1997 Feb 4;36(5):1085–1091. doi: 10.1021/bi962185l. [DOI] [PubMed] [Google Scholar]
  19. Künne A. G., Meierhans D., Allemann R. K. Basic helix-loop-helix protein MyoD displays modest DNA binding specificity. FEBS Lett. 1996 Aug 5;391(1-2):79–83. doi: 10.1016/0014-5793(96)00707-7. [DOI] [PubMed] [Google Scholar]
  20. Ma P. C., Rould M. A., Weintraub H., Pabo C. O. Crystal structure of MyoD bHLH domain-DNA complex: perspectives on DNA recognition and implications for transcriptional activation. Cell. 1994 May 6;77(3):451–459. doi: 10.1016/0092-8674(94)90159-7. [DOI] [PubMed] [Google Scholar]
  21. McCafferty J., Griffiths A. D., Winter G., Chiswell D. J. Phage antibodies: filamentous phage displaying antibody variable domains. Nature. 1990 Dec 6;348(6301):552–554. doi: 10.1038/348552a0. [DOI] [PubMed] [Google Scholar]
  22. Meierhan D., el-Ariss C., Neuenschwander M., Sieber M., Stackhouse J. F., Allemann R. K. DNA binding specificity of the basic-helix-loop-helix protein MASH-1. Biochemistry. 1995 Sep 5;34(35):11026–11036. doi: 10.1021/bi00035a008. [DOI] [PubMed] [Google Scholar]
  23. Merritt E. A., Murphy M. E. Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr D Biol Crystallogr. 1994 Nov 1;50(Pt 6):869–873. doi: 10.1107/S0907444994006396. [DOI] [PubMed] [Google Scholar]
  24. Murre C., McCaw P. S., Baltimore D. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell. 1989 Mar 10;56(5):777–783. doi: 10.1016/0092-8674(89)90682-x. [DOI] [PubMed] [Google Scholar]
  25. Percipalle P., Simoncsits A., Zakhariev S., Guarnaccia C., Sánchez R., Pongor S. Rationally designed helix-turn-helix proteins and their conformational changes upon DNA binding. EMBO J. 1995 Jul 3;14(13):3200–3205. doi: 10.1002/j.1460-2075.1995.tb07322.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Predki P. F., Regan L. Redesigning the topology of a four-helix-bundle protein: monomeric Rop. Biochemistry. 1995 Aug 8;34(31):9834–9839. doi: 10.1021/bi00031a003. [DOI] [PubMed] [Google Scholar]
  27. Rebar E. J., Pabo C. O. Zinc finger phage: affinity selection of fingers with new DNA-binding specificities. Science. 1994 Feb 4;263(5147):671–673. doi: 10.1126/science.8303274. [DOI] [PubMed] [Google Scholar]
  28. Robinson C. R., Sauer R. T. Covalent attachment of Arc repressor subunits by a peptide linker enhances affinity for operator DNA. Biochemistry. 1996 Jan 9;35(1):109–116. doi: 10.1021/bi9521194. [DOI] [PubMed] [Google Scholar]
  29. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Spolar R. S., Record M. T., Jr Coupling of local folding to site-specific binding of proteins to DNA. Science. 1994 Feb 11;263(5148):777–784. doi: 10.1126/science.8303294. [DOI] [PubMed] [Google Scholar]
  31. Sun X. H., Baltimore D. An inhibitory domain of E12 transcription factor prevents DNA binding in E12 homodimers but not in E12 heterodimers. Cell. 1991 Jan 25;64(2):459–470. doi: 10.1016/0092-8674(91)90653-g. [DOI] [PubMed] [Google Scholar]
  32. Tang Y., Jiang N., Parakh C., Hilvert D. Selection of linkers for a catalytic single-chain antibody using phage display technology. J Biol Chem. 1996 Jun 28;271(26):15682–15686. doi: 10.1074/jbc.271.26.15682. [DOI] [PubMed] [Google Scholar]
  33. Toth M. J., Schimmel P. Internal structural features of E. coli glycyl-tRNA synthetase examined by subunit polypeptide chain fusions. J Biol Chem. 1986 May 25;261(15):6643–6646. [PubMed] [Google Scholar]
  34. Winter G., Griffiths A. D., Hawkins R. E., Hoogenboom H. R. Making antibodies by phage display technology. Annu Rev Immunol. 1994;12:433–455. doi: 10.1146/annurev.iy.12.040194.002245. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES