Abstract
The initiating and promoting effects of trichloroacetic acid (TCA) were investigated using a rat hepatic enzyme-altered foci bioassay. The experimental protocol used has been shown to induce gamma-glutamyltranspeptidase (GGT)-positive foci in hepatic tissue following an initiating dose with a genotoxic carcinogen. Twenty-four hours following 2/3 partial hepatectomy, rats received either a single oral dose (1500 mg/kg) or 5000 ppm TCA in drinking water for 10, 20, or 30 days. Two weeks after the end of TCA exposure, the rats were promoted for 3 or 6 months with 500 ppm phenobarbital in drinking water. TCA failed to induce GGT-positive foci using this initiation protocol. In addition, groups of 2/3 partially hepatectomized rats were initiated with a single oral dose of diethylnitrosamine (10 mg/kg) and then administered 50, 500, or 5000 ppm TCA drinking water. In this promotion protocol, TCA exposure resulted in a significant increase in the number of GGT-positive foci. The ability of TCA to stimulate peroxisomal-dependent palmitoyl-coenzyme A oxidation was also investigated. Only the 5000 ppm TCA treatment within the promotion protocol resulted in a significant, although minor, stimulation of peroxisomal enzyme activity. The findings support the hypothesis that TCA may possess weak promoting activity in the rat liver.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Costa A. K., Ivanetich K. M. Vinylidene chloride: its metabolism by hepatic microsomal cytochrome P-450 in vitro. Biochem Pharmacol. 1982 Jun 1;31(11):2083–2092. doi: 10.1016/0006-2952(82)90425-7. [DOI] [PubMed] [Google Scholar]
- Crabb D. W., Yount E. A., Harris R. A. The metabolic effects of dichloroacetate. Metabolism. 1981 Oct;30(10):1024–1039. doi: 10.1016/0026-0495(81)90105-0. [DOI] [PubMed] [Google Scholar]
- DANIEL J. W. THE METABOLISM OF 36C1-LABELLED TRICHLOROETHYLENE AND TETRACHLOROETHYLENE IN THE RAT. Biochem Pharmacol. 1963 Aug;12:795–802. doi: 10.1016/0006-2952(63)90109-6. [DOI] [PubMed] [Google Scholar]
- Elcombe C. R., Rose M. S., Pratt I. S. Biochemical, histological, and ultrastructural changes in rat and mouse liver following the administration of trichloroethylene: possible relevance to species differences in hepatocarcinogenicity. Toxicol Appl Pharmacol. 1985 Jul;79(3):365–376. doi: 10.1016/0041-008x(85)90135-8. [DOI] [PubMed] [Google Scholar]
- Evans O. B., Stacpoole P. W. Prolonged hypolactatemia and increased total pyruvate dehydrogenase activity by dichloroacetate. Biochem Pharmacol. 1982 Apr 1;31(7):1295–1300. doi: 10.1016/0006-2952(82)90019-3. [DOI] [PubMed] [Google Scholar]
- Ford J. O., Pereira M. A. Short-term in vivo initiation/promotion bioassay for hepatocarcinogens. J Environ Pathol Toxicol. 1980 Nov;4(5-6):39–46. [PubMed] [Google Scholar]
- Goldsworthy T., Campbell H. A., Pitot H. C. The natural history and dose-response characteristics of enzyme-altered foci in rat liver following phenobarbital and diethylnitrosamine administration. Carcinogenesis. 1984 Jan;5(1):67–71. doi: 10.1093/carcin/5.1.67. [DOI] [PubMed] [Google Scholar]
- Green T., Prout M. S. Species differences in response to trichloroethylene. II. Biotransformation in rats and mice. Toxicol Appl Pharmacol. 1985 Jul;79(3):401–411. doi: 10.1016/0041-008x(85)90138-3. [DOI] [PubMed] [Google Scholar]
- Halpert J. Cytochrome P-450-dependent covalent binding of 1,1,2,2-tetrachloroethane in vitro. Drug Metab Dispos. 1982 Sep-Oct;10(5):465–468. [PubMed] [Google Scholar]
- Halpert J., Neal R. A. Cytochrome P-450-dependent metabolism of 1,1,2,2-tetrachloroethane to dichloroacetic acid in vitro. Biochem Pharmacol. 1981 Jun 1;30(11):1366–1368. doi: 10.1016/0006-2952(81)90324-5. [DOI] [PubMed] [Google Scholar]
- Hayek A., Woodside W. F. Short-term influences of dichloroacetate on genetically hyperlipemic rats. Metabolism. 1980 Feb;29(2):120–124. doi: 10.1016/0026-0495(80)90135-3. [DOI] [PubMed] [Google Scholar]
- Jensen R. K., Sleight S. D., Aust S. D. Effect of varying the length of exposure to polybrominated biphenyls on the development of gamma-glutamyl transpeptidase enzyme-altered foci. Carcinogenesis. 1984 Jan;5(1):63–66. doi: 10.1093/carcin/5.1.63. [DOI] [PubMed] [Google Scholar]
- Johnson J. D., Christman R. F., Norwood D. L., Millington D. S. Reaction products of aquatic humic substances with chlorine. Environ Health Perspect. 1982 Dec;46:63–71. doi: 10.1289/ehp.824663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lalwani N. D., Reddy M. K., Qureshi S. A., Reddy J. K. Development of hepatocellular carcinomas and increased peroxisomal fatty acid beta-oxidation in rats fed [4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio] acetic acid (Wy-14,643) in the semipurified diet. Carcinogenesis. 1981;2(7):645–650. doi: 10.1093/carcin/2.7.645. [DOI] [PubMed] [Google Scholar]
- Lalwani N. D., Reddy M. K., Qureshi S. A., Sirtori C. R., Abiko Y., Reddy J. K. Evaluation of selected hypolipidemic agents for the induction of peroxisomal enzymes and peroxisome proliferation in the rat liver. Hum Toxicol. 1983 Jan;2(1):27–48. doi: 10.1177/096032718300200103. [DOI] [PubMed] [Google Scholar]
- Lazarow P. B. Assay of peroxisomal beta-oxidation of fatty acids. Methods Enzymol. 1981;72:315–319. doi: 10.1016/s0076-6879(81)72021-4. [DOI] [PubMed] [Google Scholar]
- Lazarow P. B., De Duve C. A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci U S A. 1976 Jun;73(6):2043–2046. doi: 10.1073/pnas.73.6.2043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lazarow P. B. Three hypolipidemic drugs increase hepatic palmitoyl-coenzyme A oxidation in the rat. Science. 1977 Aug 5;197(4303):580–581. doi: 10.1126/science.195342. [DOI] [PubMed] [Google Scholar]
- McCall S. N., Jurgens P., Ivanetich K. M. Hepatic microsomal metabolism of the dichloroethanes. Biochem Pharmacol. 1983 Jan 15;32(2):207–213. doi: 10.1016/0006-2952(83)90545-2. [DOI] [PubMed] [Google Scholar]
- Mink F. L., Coleman W. E., Munch J. W., Kaylor W. H., Ringhand H. P. In vivo formation of halogenated reaction products following peroral sodium hypochlorite. Bull Environ Contam Toxicol. 1983 Apr;30(4):394–399. doi: 10.1007/BF01610150. [DOI] [PubMed] [Google Scholar]
- Pardridge W. M., Duducgian-Vartavarian L., Casanello-Ertl D. Effects of dichloroacetate on the lactate/pyruvate ratio and on aspartate and leucine metabolism in cultured rat skeletal muscle cells. Biochem Pharmacol. 1983 Jan 1;32(1):97–100. doi: 10.1016/0006-2952(83)90659-7. [DOI] [PubMed] [Google Scholar]
- Prout M. S., Provan W. M., Green T. Species differences in response to trichloroethylene. I. Pharmacokinetics in rats and mice. Toxicol Appl Pharmacol. 1985 Jul;79(3):389–400. doi: 10.1016/0041-008x(85)90137-1. [DOI] [PubMed] [Google Scholar]
- Rapson W. H., Nazar M. A., Butsky V. V. Mutagenicity produced by aqueous chlorination of organic compounds. Bull Environ Contam Toxicol. 1980 Apr;24(4):590–596. doi: 10.1007/BF01608160. [DOI] [PubMed] [Google Scholar]
- Reddy J. K., Azarnoff D. L., Hignite C. E. Hypolipidaemic hepatic peroxisome proliferators form a novel class of chemical carcinogens. Nature. 1980 Jan 24;283(5745):397–398. doi: 10.1038/283397a0. [DOI] [PubMed] [Google Scholar]
- Reddy J. K., Warren J. R., Reddy M. K., Lalwani N. D. Hepatic and renal effects of peroxisome proliferators: biological implications. Ann N Y Acad Sci. 1982;386:81–110. doi: 10.1111/j.1749-6632.1982.tb21409.x. [DOI] [PubMed] [Google Scholar]
- Ribes G., Valette G., Loubatieres-Mariani M. M. Metabolic effects of sodium dichloroacetate in normal and diabetic dogs. Diabetes. 1979 Sep;28(9):852–857. doi: 10.2337/diab.28.9.852. [DOI] [PubMed] [Google Scholar]
- Rutenburg A. M., Kim H., Fischbein J. W., Hanker J. S., Wasserkrug H. L., Seligman A. M. Histochemical and ultrastructural demonstration of gamma-glutamyl transpeptidase activity. J Histochem Cytochem. 1969 Aug;17(8):517–526. doi: 10.1177/17.8.517. [DOI] [PubMed] [Google Scholar]
- Warren J. R., Simmon V. F., Reddy J. K. Properties of hypolipidemic peroxisome proliferators in the lymphocyte [3H]thymidine and Salmonella mutagenesis assays. Cancer Res. 1980 Jan;40(1):36–41. [PubMed] [Google Scholar]
- Waskell L. A study of the mutagenicity of anesthetics and their metabolites. Mutat Res. 1978 May;57(2):141–153. doi: 10.1016/0027-5107(78)90261-0. [DOI] [PubMed] [Google Scholar]
