Abstract
Drinking water disinfection provides the final barrier to transmission of a wide variety of potentially waterborne infectious agents including pathogenic bacteria, viruses, and protozoa. These agents differ greatly in their innate resistance to inactivation by disinfectants, ranging from extremely sensitive bacteria to highly resistant protozoan cysts. The close similarity between microorganism inactivation rates and the kinetics of chemical reactions has long been recognized. Ideally, under carefully controlled conditions, microorganism inactivation rates simulate first-order chemical reaction rates, making it possible to predict the effectiveness of disinfection under specific conditions. In practice, changes in relative resistance and deviations from first-order kinetics are caused by a number of factors, including microbial growth conditions, aggregation, and association with particulate materials. The net effect of all these factors is a reduction in the effectiveness and predictability of disinfection processes. To ensure effective pathogen control, disinfectant concentrations and contact times greater than experimentally determined values may be required. Of the factors causing enhanced disinfection resistance, protection by association with particulate matter is the most significant. Therefore, removal of particulate matter is an important step in increasing the effectiveness of disinfection processes.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bates R. C., Shaffer P. T., Sutherland S. M. Development of poliovirus having increased resistance to chlorine inactivation. Appl Environ Microbiol. 1977 Dec;34(6):849–853. doi: 10.1128/aem.34.6.849-853.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berg J. D., Matin A., Roberts P. V. Effect of antecedent growth conditions on sensitivity of Escherichia coli to chlorine dioxide. Appl Environ Microbiol. 1982 Oct;44(4):814–819. doi: 10.1128/aem.44.4.814-819.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blaser M. J., Smith P. F., Wang W. L., Hoff J. C. Inactivation of Campylobacter jejuni by chlorine and monochloramine. Appl Environ Microbiol. 1986 Feb;51(2):307–311. doi: 10.1128/aem.51.2.307-311.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carson L. A., Favero M. S., Bond W. W., Petersen N. J. Factors affecting comparative resistance of naturally occurring and subcultured Pseudomonas aeruginosa to disinfectants. Appl Microbiol. 1972 May;23(5):863–869. doi: 10.1128/am.23.5.863-869.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FARKAS-HIMSLEY H. KILLING OF CHLORINE-RESISTANT BACTERIA BY CHLORINE-BROMINE SOLUTIONS. Appl Microbiol. 1964 Jan;12:1–6. doi: 10.1128/am.12.1.1-6.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FAVERO M. S., DRAKE C. H., RANDALL G. B. USE OF STAPHYLOCOCCI AS INDICATORS OF SWIMMING POOL POLLUTION. Public Health Rep. 1964 Jan;79:61–70. [PMC free article] [PubMed] [Google Scholar]
- Favero M. S., Drake C. H. Factors influencing the occurrence of high numbers of iodine-resistant bacteria in iodinated swimming pools. Appl Microbiol. 1966 Jul;14(4):627–635. doi: 10.1128/am.14.4.627-635.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harakeh M. S., Berg J. D., Hoff J. C., Matin A. Susceptibility of chemostat-grown Yersinia enterocolitica and Klebsiella pneumoniae to chlorine dioxide. Appl Environ Microbiol. 1985 Jan;49(1):69–72. doi: 10.1128/aem.49.1.69-72.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hejkal T. W., Wellings F. M., LaRock P. A., Lewis A. L. Survival of poliovirus within organic solids during chlorination. Appl Environ Microbiol. 1979 Jul;38(1):114–118. doi: 10.1128/aem.38.1.114-118.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keswick B. H., Fujioka R. S., Loh P. C. Mechanism of poliovirus inactivation by bromine chloride. Appl Environ Microbiol. 1981 Nov;42(5):824–829. doi: 10.1128/aem.42.5.824-829.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuchta J. M., States S. J., McGlaughlin J. E., Overmeyer J. H., Wadowsky R. M., McNamara A. M., Wolford R. S., Yee R. B. Enhanced chlorine resistance of tap water-adapted Legionella pneumophila as compared with agar medium-passaged strains. Appl Environ Microbiol. 1985 Jul;50(1):21–26. doi: 10.1128/aem.50.1.21-26.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kulikovsky A., Pankratz H. S., Sadoff H. L. Ultrastructural and chemical changes in spores of Bacillus cereus after action of disinfectants. J Appl Bacteriol. 1975 Feb;38(1):39–46. doi: 10.1111/j.1365-2672.1975.tb00498.x. [DOI] [PubMed] [Google Scholar]
- O'Brien R. T., Newman J. Structural and compositional changes associated with chlorine inactivation of polioviruses. Appl Environ Microbiol. 1979 Dec;38(6):1034–1039. doi: 10.1128/aem.38.6.1034-1039.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Payment P., Trudel M., Plante R. Elimination of viruses and indicator bacteria at each step of treatment during preparation of drinking water at seven water treatment plants. Appl Environ Microbiol. 1985 Jun;49(6):1418–1428. doi: 10.1128/aem.49.6.1418-1428.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stagg C. H., Wallis C., Ward C. H. Inactivation of clay-associated bacteriophage MS-2 by chlorine. Appl Environ Microbiol. 1977 Feb;33(2):385–391. doi: 10.1128/aem.33.2.385-391.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams F. P., Jr Membrane-associated viral complexes observed in stools and cell culture. Appl Environ Microbiol. 1985 Aug;50(2):523–526. doi: 10.1128/aem.50.2.523-526.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]

