Abstract
Biotransformation of xenobiotics in fish occurs by many of the same reactions as in mammals. These reactions have been shown to affect the bioaccumulation, persistence, residue dynamics, and toxicity of select chemicals in fish. P-450-dependent monooxygenase activity of fish can be induced by polycyclic aromatic hydrocarbons, but phenobarbital-type agents induce poorly, if at all. Fish monooxygenase activity exhibits ideal temperature compensation and sex-related variation. Induction of monooxygenase activity by polycyclic aromatic hydrocarbons can result in qualitative as well as quantitative changes in the metabolic profile of a chemical. Induction can also alter toxicity. In addition, multiple P-450 isozymes have been described for several fish species. The biotransformation products of certain chemicals have been related to specific P-450 isozymes, and the formation of these products can be influenced by induction. Exposure of fish to low levels of certain environmental contaminants has resulted in induction of specific monooxygenase activities and monitoring of such activities has been suggested as a means of identifying areas of pollutant exposure in the wild.
Full text
PDF














Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Addison R. F., Zinck M. E., Willis D. E. Induction of hepatic mixed-function oxidase (MFO) enzymes in trout (Salvelinus fontinalis) by feeding Aroclor 1254 or 3-methylcholanthrene. Comp Biochem Physiol C. 1978;61 100(2):323–325. doi: 10.1016/0306-4492(78)90062-x. [DOI] [PubMed] [Google Scholar]
- Addison R. F., Zinck M. E., Willis D. E. Mixed function oxidase enzymes in trout (Salvelines fontinalis) liver: absence of induction following feeding of p,p'-ddt or p,p'-dde. Comp Biochem Physiol C. 1977;57(1):39–43. doi: 10.1016/0306-4492(77)90075-2. [DOI] [PubMed] [Google Scholar]
- Ahokas J. T., Kärki N. T., Oikari A., Soivio A. Mixed function monooxygenase of fish as an indicator of pollution of aquatic environment by industrial effluent. Bull Environ Contam Toxicol. 1976 Sep;16(3):270–274. doi: 10.1007/BF01685888. [DOI] [PubMed] [Google Scholar]
- Ankley G. T., Reinert R. E., Wade A. E., White R. A. Temperature compensation in the hepatic mixed-function oxidase system of bluegill. Comp Biochem Physiol C. 1985;81(1):125–129. doi: 10.1016/0742-8413(85)90102-1. [DOI] [PubMed] [Google Scholar]
- Bailey G. S., Taylor M. J., Selivonchick D. P. Aflatoxin B1 metabolism and DNA binding in isolated hepatocytes from rainbow trout (Salmo gairdneri). Carcinogenesis. 1982;3(5):511–518. doi: 10.1093/carcin/3.5.511. [DOI] [PubMed] [Google Scholar]
- Balk L., Meijer J., Seidegärd J., Morgenstein R., Depierre J. W. Initial characterization of drug-metabolizing systems in the liver of the Northern pike, Esox lucius. Drug Metab Dispos. 1980 Mar-Apr;8(2):98–103. [PubMed] [Google Scholar]
- Balk L., Meijer J., Seidegärd J., Morgenstein R., Depierre J. W. Initial characterization of drug-metabolizing systems in the liver of the Northern pike, Esox lucius. Drug Metab Dispos. 1980 Mar-Apr;8(2):98–103. [PubMed] [Google Scholar]
- Binder R. L., Lech J. J. Xenobiotics in gametes of Lake Michigan lake trout (Salvelinus namaycush) induce hepatic monooxygenase activity in their offspring. Fundam Appl Toxicol. 1984 Dec;4(6):1042–1054. doi: 10.1016/0272-0590(84)90244-6. [DOI] [PubMed] [Google Scholar]
- Binder R. L., Stegeman J. J. Induction of aryl hydrocarbon hydroxylase activity in embryos of estuarine fish. Biochem Pharmacol. 1980 Mar 15;29(6):949–951. doi: 10.1016/0006-2952(80)90226-9. [DOI] [PubMed] [Google Scholar]
- Buhler D. R., Rasmusson M. E. The oxidation of drugs by fishes. Comp Biochem Physiol. 1968 Apr;25(1):223–239. doi: 10.1016/0010-406x(68)90931-6. [DOI] [PubMed] [Google Scholar]
- Burns K. A. Microsomal mixed function oxidases in an estuarine fish, Fundulus heteroclitus, and their induction as a result of environmental contamination. Comp Biochem Physiol B. 1976;53(4):443–446. doi: 10.1016/0305-0491(76)90195-4. [DOI] [PubMed] [Google Scholar]
- Büchi G. H., Müller P. M., Roebuck B. D., Wogan G. N. Aflatoxin Q1: a major metabolite of aflatoxin B1 produced by human liver. Res Commun Chem Pathol Pharmacol. 1974 Aug;8(4):585–592. [PubMed] [Google Scholar]
- Caces E., de Lauture H., Vol S., Tichet J., Boulard P. Le depistage systematique de la brucellose humaine par le test au Rose Bengale en milieu agricole d'apres une etude dans le centre-ouest de la France sur 89 000 exploitants et salaries. Comp Immunol Microbiol Infect Dis. 1978;1(1-2):107–114. doi: 10.1016/0147-9571(78)90017-6. [DOI] [PubMed] [Google Scholar]
- Campbell T. C., Hayes J. R. The role of aflatoxin metabolism in its toxic lesion. Toxicol Appl Pharmacol. 1976 Feb;35(2):199–222. doi: 10.1016/0041-008x(76)90282-9. [DOI] [PubMed] [Google Scholar]
- Chambers J. E., Yarbrough J. D. Xenobiotic biotransformation systems in fishes. Comp Biochem Physiol C. 1976;55(2):77–84. doi: 10.1016/0306-4492(76)90027-7. [DOI] [PubMed] [Google Scholar]
- Chevion M., Stegeman J. J., Peisach J., Blumberg W. E. Electron paramagnetic resonance studies on hepatic microsomal cytochrome P-450 from a marine teleost fish. Life Sci. 1977 Mar 1;20(5):895–899. doi: 10.1016/0024-3205(77)90043-1. [DOI] [PubMed] [Google Scholar]
- Collier T. K., Gruger E. H., Jr, Varanasi U. Effect of Aroclor 1254 on the biological fate of 2,6-dimethylnaphthalene in coho salmon (Oncorhynchus kisutch). Bull Environ Contam Toxicol. 1985 Jan;34(1):114–120. doi: 10.1007/BF01609711. [DOI] [PubMed] [Google Scholar]
- Cook G. H., Moore J. C. Determination of malathion, malaoxon, and mono- and dicarboxylic acids of malathion in fish, oyster, and shrimp tissue. J Agric Food Chem. 1976 May-Jun;24(3):631–634. doi: 10.1021/jf60205a051. [DOI] [PubMed] [Google Scholar]
- Dahms R., Gurtoo H. L. Metabolism of aflatoxin B1 to aflatoxins Q1, M1 and P1 by mouse and rat. Res Commun Chem Pathol Pharmacol. 1976 Sep;15(1):11–20. [PubMed] [Google Scholar]
- Degen G. H., Neumann H. G. Differences in aflatoxin B1-susceptibility of rat and mouse are correlated with the capability in vitro to inactivate aflatoxin B1-epoxide. Carcinogenesis. 1981;2(4):299–306. doi: 10.1093/carcin/2.4.299. [DOI] [PubMed] [Google Scholar]
- Denison M. S., Hamilton J. W., Wilkinson C. F. Comparative studies of aryl hydrocarbon hydroxylase and the Ah receptor in nonmammalian species. Comp Biochem Physiol C. 1985;80(2):319–324. doi: 10.1016/0742-8413(85)90063-5. [DOI] [PubMed] [Google Scholar]
- Egaas E., Varanasi U. Effects of polychlorinated biphenyls and environmental temperature on in vitro formation of benzo[a]pyrene metabolites by liver of trout (Salmo gairdneri). Biochem Pharmacol. 1982 Feb 15;31(4):561–566. doi: 10.1016/0006-2952(82)90160-5. [DOI] [PubMed] [Google Scholar]
- Elcombe C. R., Lech J. J. Induction and characterization of hemoprotein(s) P-450 and monooxygenation in rainbow trout (Salmo gairdneri). Toxicol Appl Pharmacol. 1979 Jul;49(3):437–450. doi: 10.1016/0041-008x(79)90444-7. [DOI] [PubMed] [Google Scholar]
- Elcombe C. R., Lech J. J. Induction of monooxygenation in rainbow trout by polybrominated biphenyls: a comparative study. Environ Health Perspect. 1978 Apr;23:309–314. doi: 10.1289/ehp.7823309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Förlin L. Effects of clophen A50, 3-methylcholanthrene, pregnenolone-16 alpha-carbonitrile, and phenobarbital on the hepatic microsomal cytochrome P-450-dependent monooxygenase system in rainbow trout, Salmo gairdneri, of different age and sex. Toxicol Appl Pharmacol. 1980 Jul;54(3):420–430. doi: 10.1016/0041-008x(80)90169-6. [DOI] [PubMed] [Google Scholar]
- Gerhart E. H., Carlson R. M. Hepatic mixed-function oxidase activity in rainbow trout exposed to several polycyclic aromatic compounds. Environ Res. 1978 Oct;17(2):284–295. doi: 10.1016/0013-9351(78)90031-2. [DOI] [PubMed] [Google Scholar]
- Glickman A. H., Statham C. N., Wu A., Lech J. J. Studies on the uptake, metabolism, and disposition of pentachlorophenol and pentachloroanisole in rainbow trout. Toxicol Appl Pharmacol. 1977 Sep;41(3):649–658. doi: 10.1016/s0041-008x(77)80018-5. [DOI] [PubMed] [Google Scholar]
- Gooch J. W., Matsumura F. Characteristics of the hepatic monooxygenase system of the goldfish (Carassius auratus) and its induction with beta-naphthoflavone. Toxicol Appl Pharmacol. 1983 May;68(3):380–391. doi: 10.1016/0041-008x(83)90282-x. [DOI] [PubMed] [Google Scholar]
- Guiney P. D., Melancon M. J., Jr, Lech J. J., Peterson R. E. Effects of egg and sperm maturation and spawning on the distribution and elimination of a polychlorinated biphenyl in rainbow trout (Salmo gairdneri). Toxicol Appl Pharmacol. 1979 Feb;47(2):261–272. doi: 10.1016/0041-008x(79)90320-x. [DOI] [PubMed] [Google Scholar]
- Gurumurthy P., Mannering G. J. Membrane bound cytochrome P-450 determines the optimal temperatures of NADPH-cytochrome P-450 reductase and cytochrome P-450-linked monooxygenase reactions in rat and trout hepatic microsomes. Biochem Biophys Res Commun. 1985 Mar 15;127(2):571–577. doi: 10.1016/s0006-291x(85)80198-4. [DOI] [PubMed] [Google Scholar]
- Gustafsson J. A. Steroid hydroxylations catalyzed by cytochrome P-450. Methods Enzymol. 1978;52:377–388. doi: 10.1016/s0076-6879(78)52042-9. [DOI] [PubMed] [Google Scholar]
- Gutman Y., Kidron M. Liver N-demethylating activity--temperature effect and phenobarbital induction in different species. Biochem Pharmacol. 1971 Dec;20(12):3547–3549. doi: 10.1016/0006-2952(71)90463-1. [DOI] [PubMed] [Google Scholar]
- HUANG K. C., COLLINS S. F. Conjugation and excretion of aminobenzoic acid isomers in marine fishes. J Cell Comp Physiol. 1962 Aug;60:49–52. doi: 10.1002/jcp.1030600107. [DOI] [PubMed] [Google Scholar]
- Hansen L. G., Kapoor I. P., Metcalf R. L. Biochemistry of selective toxicity and biodegradability: comparative O-dealkylation by aquatic organisms. Comp Gen Pharmacol. 1972 Sep;3(11):339–344. doi: 10.1016/0010-4035(72)90013-4. [DOI] [PubMed] [Google Scholar]
- Hansson T., Rafter J., Gustafsson J. A. A comparative study on the hepatic in vitro metabolism of 4-androstene-3, 17-dione in the hagfish, Myxine glutinosa, the dogfish, Squalus acanthias, and the rainbow trout, Salmo gairdnerii. Gen Comp Endocrinol. 1979 Feb;37(2):240–245. doi: 10.1016/0016-6480(79)90112-6. [DOI] [PubMed] [Google Scholar]
- Hansson T., Rafter J., Gustafsson J. A. Effects of some common inducers on the hepatic microsomal metabolism of androstenedione in rainbow trout with special reference to cytochrome P-450-dependent enzymes. Biochem Pharmacol. 1980 Feb 15;29(4):583–587. doi: 10.1016/0006-2952(80)90380-9. [DOI] [PubMed] [Google Scholar]
- James M. O., Bend J. R. Polycyclic aromatic hydrocarbon induction of cytochrome P-450-dependent mixed-function oxidases in marine fish. Toxicol Appl Pharmacol. 1980 Jun 15;54(1):117–133. doi: 10.1016/0041-008x(80)90012-5. [DOI] [PubMed] [Google Scholar]
- James M. O., Bend J. R. Taurine conjugation of 2,4-dichlorophenoxyacetic acid and phenylacetic acid in two marine species. Xenobiotica. 1976 Jul;6(7):393–398. doi: 10.3109/00498257609151651. [DOI] [PubMed] [Google Scholar]
- James M. O., Little P. J. Polyhalogenated biphenyls and phenobarbital: evaluation as inducers of drug metabolizing enzymes in the sheepshead, Archosargus probatocephalus. Chem Biol Interact. 1981 Aug;36(2):229–248. doi: 10.1016/0009-2797(81)90022-3. [DOI] [PubMed] [Google Scholar]
- Kapoor I. P., Metcalf R. L., Hirwe A. S., Coats J. R., Khalsa M. S. Structure activity correlations of biodegradability of DDT analogs. J Agric Food Chem. 1973 Mar-Apr;21(2):310–315. doi: 10.1021/jf60186a044. [DOI] [PubMed] [Google Scholar]
- Kezić N., Britvić S., Protić M., Simmons J. E., Rijavec M., Zahn R. K., Kurelec B. Activity of benzo[a]pyrene monooxygenase in fish from the Sava River, Yugoslavia: correlation with pollution. Sci Total Environ. 1983 Mar;27(1):59–69. doi: 10.1016/0048-9697(83)90124-9. [DOI] [PubMed] [Google Scholar]
- Klotz A. V., Stegeman J. J., Walsh C. An aryl hydrocarbon hydroxylating hepatic cytochrome P-450 from the marine fish Stenotomus chrysops. Arch Biochem Biophys. 1983 Oct 15;226(2):578–592. doi: 10.1016/0003-9861(83)90327-2. [DOI] [PubMed] [Google Scholar]
- Kurelec B., Matijasevic Z., Rijavec M., Alacevic M., Britvic S., Müller W. E., Zahn R. K. Induction of benzo (a)pyrene monooxygenase in fish and the Salmonella test as a tool for detecting mutagenic/carcinogenic xenobiotics in the aquatic environment. Bull Environ Contam Toxicol. 1979 Apr;21(6):799–807. doi: 10.1007/BF01685508. [DOI] [PubMed] [Google Scholar]
- Lay M. M., Menn J. J. Mercapturic acid occurrence in fish bile. A terminal product of metabolism of the herbicide molinate. Xenobiotica. 1979 Nov;9(11):669–673. doi: 10.3109/00498257909042334. [DOI] [PubMed] [Google Scholar]
- Lech J. J., Bend J. R. Relationship between biotransformation and the toxicity and fate of xenobiotic chemicals in fish. Environ Health Perspect. 1980 Feb;34:115–131. doi: 10.1289/ehp.8034115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lech J. J. Glucuronide formation in rainbow trout--effect of salicylamide on the acute toxicity, conjugation and excretion of 3-trifluoromethyl-4-nitrophenol. Biochem Pharmacol. 1974 Sep 1;23(17):2403–2410. doi: 10.1016/0006-2952(74)90231-7. [DOI] [PubMed] [Google Scholar]
- Lidman U., Förlin L., Molander O., Axelson G. Induction of the drug metabolizing system in rainbow trout (Salmo gairdnerii) liver by polychlorinated biphenyls (PCBs). Acta Pharmacol Toxicol (Copenh) 1976 Aug;39(2):262–272. doi: 10.1111/j.1600-0773.1976.tb03178.x. [DOI] [PubMed] [Google Scholar]
- Little P. J., James M. O., Bend J. R., Ryan A. J. Imidazole derivatives as inhibitors of cytochrome P-450-dependent oxidation and activators of epoxide hydrolase in hepatic microsomes from a marine fish. Biochem Pharmacol. 1981 Oct;30(20):2876–2880. doi: 10.1016/0006-2952(81)90432-9. [DOI] [PubMed] [Google Scholar]
- Loveland P. M., Nixon J. E., Bailey G. S. Glucuronides in bile of rainbow trout (Salmo gairdneri) injected with [3H]aflatoxin B1 and the effects of dietary beta-naphthoflavone. Comp Biochem Physiol C. 1984;78(1):13–19. doi: 10.1016/0742-8413(84)90040-9. [DOI] [PubMed] [Google Scholar]
- Ludke J. L., Gibson J. R., Lusk C. I. Mixed function oxidase activity in freshwater fishes: aldrin epoxidation and parathion activation. Toxicol Appl Pharmacol. 1972 Jan;21(1):89–97. doi: 10.1016/0041-008x(72)90030-0. [DOI] [PubMed] [Google Scholar]
- Malins D. C., Krahn M. M., Myers M. S., Rhodes L. D., Brown D. W., Krone C. A., McCain B. B., Chan S. L. Toxic chemicals in sediments and biota from a creosote-polluted harbor: relationships with hepatic neoplasms and other hepatic lesions in English sole (Parophrys vetulus). Carcinogenesis. 1985 Oct;6(10):1463–1469. doi: 10.1093/carcin/6.10.1463. [DOI] [PubMed] [Google Scholar]
- Melancon M. J., Elcombe C. R., Vodicnik M. J., Lech J. J. Induction of cytochromes P450 and mixed-function oxidase activity by polychlorinated biphenyls and beta-naphthoflavone in carp (Cyprinus carpio). Comp Biochem Physiol C. 1981;69(2):219–226. doi: 10.1016/0306-4492(81)90132-5. [DOI] [PubMed] [Google Scholar]
- Melancon M. J., Jr, Lech J. J. Distribution and biliary excretion products of di-2-ethylhexyl phthalate in rainbow trout. Drug Metab Dispos. 1976 Mar-Apr;4(2):112–118. [PubMed] [Google Scholar]
- Melancon M. J., Jr, Lech J. J. Distribution and elimination of naphthalene and 2-methylnaphthalene in rainbow trout during short- and long-term exposures. Arch Environ Contam Toxicol. 1978;7(2):207–220. doi: 10.1007/BF02332049. [DOI] [PubMed] [Google Scholar]
- Melancon M. J., Jr, Saybolt J., Lech J. J. Effect of piperonyl butoxide on disposition of di-2-ethylhexyl phthalate by rainbow trout. Xenobiotica. 1977 Oct;7(10):633–640. doi: 10.3109/00498257709038685. [DOI] [PubMed] [Google Scholar]
- Melancon M. J., Lech J. J. Metabolism of [14C]2-methylnaphthalene by rainbow trout (Salmo gairdneri) in vivo. Comp Biochem Physiol C. 1984;79(2):331–336. doi: 10.1016/0742-8413(84)90210-x. [DOI] [PubMed] [Google Scholar]
- Melancon M. J., Rickert D. E., Lech J. J. Metabolism of 2-methylnaphthalene in the rat in vivo. I. Identification of 2-naphthoylglycine. Drug Metab Dispos. 1982 Mar-Apr;10(2):128–133. [PubMed] [Google Scholar]
- Melancon M. J., Williams D. E., Buhler D. R., Lech J. J. Metabolism of 2-methylnaphthalene by rat and rainbow trout hepatic microsomes and purified cytochromes P-450. Drug Metab Dispos. 1985 Sep-Oct;13(5):542–547. [PubMed] [Google Scholar]
- Narbonne J. F., Gallis J. L. In vivo and in vitro effect of Phenoclor DP6 on drug metabolizing activity in mullet liver. Bull Environ Contam Toxicol. 1979 Oct;23(3):338–343. doi: 10.1007/BF01769966. [DOI] [PubMed] [Google Scholar]
- Nimmo I. A., Spalding C. M. The glutathione S-transferase activity in the kidney of rainbow trout (Salmo gairdneri). Comp Biochem Physiol B. 1985;82(1):91–94. doi: 10.1016/0305-0491(85)90133-6. [DOI] [PubMed] [Google Scholar]
- Olson L. E., Allen J. L., Hogan J. W. Biotransformation and elimination of the herbicide dinitramine in carp. J Agric Food Chem. 1977 May-Jun;25(3):554–556. doi: 10.1021/jf60211a015. [DOI] [PubMed] [Google Scholar]
- Payne J. F., Bauld C., Dey A. C., Kiceniuk J. W., Williams U. Selectivity of mixed-function oxygenase enzyme induction in flounder (Pseudopleuronectes americanus) collected at the site of the Baie Verte, Newfoundland oil spill. Comp Biochem Physiol C. 1984;79(1):15–19. doi: 10.1016/0742-8413(84)90155-5. [DOI] [PubMed] [Google Scholar]
- Payne J. F. Field evaluation of benzopyrene hydroxylase induction as a monitor for marine petroleum pollution. Science. 1976 Mar 5;191(4230):945–946. doi: 10.1126/science.1251203. [DOI] [PubMed] [Google Scholar]
- Payne J. F., Penrose W. R. Induction of aryl hydrocarbon (benzo[a]pyrene) hydroxylase in fish by petroleum. Bull Environ Contam Toxicol. 1975 Jul;14(01):112–116. doi: 10.1007/BF01685608. [DOI] [PubMed] [Google Scholar]
- Pohl R. J., Bend J. R., Guarino A. M., Fouts J. R. Hepatic microsomal mixed-function oxidase activity of several marine species from coastal Maine. Drug Metab Dispos. 1974 Nov-Dec;2(6):545–555. [PubMed] [Google Scholar]
- Poland A., Glover E., Kende A. S. Stereospecific, high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol. Evidence that the binding species is receptor for induction of aryl hydrocarbon hydroxylase. J Biol Chem. 1976 Aug 25;251(16):4936–4946. [PubMed] [Google Scholar]
- Ridlington J. W., Chapman D. E., Boese B. L., Johnson V. G., Randall R. Petroleum refinery wastewater induction of the hepatic mixed-function oxidase system in Pacific staghorn sculpin. Arch Environ Contam Toxicol. 1982;11(1):123–127. doi: 10.1007/BF01055197. [DOI] [PubMed] [Google Scholar]
- Selkirk J. K., Croy R. G., Gelboin H. V. High-pressure liquid chromatographic separation of 10 benzo(a)pyrene phenols and the identification of 1-phenol and 7-phenol as new metabolites. Cancer Res. 1976 Mar;36(3):922–926. [PubMed] [Google Scholar]
- Statham C. N., Elcombe C. R., Szyjka S. P., Lech J. J. Effect of polycyclic aromatic hydrocarbons on hepatic microsomal enzymes and disposition of methylnaphthalene in rainbow trout in vivo. Xenobiotica. 1978 Feb;8(2):65–71. doi: 10.3109/00498257809060385. [DOI] [PubMed] [Google Scholar]
- Statham C. N., Melancon M. J., Jr, Lech J. J. Bioconcentration of xenobiotics in trout bile: a proposed monitoring aid for some waterborne chemicals. Science. 1976 Aug 20;193(4254):680–681. doi: 10.1126/science.948743. [DOI] [PubMed] [Google Scholar]
- Stegeman J. J., Chevion M. Sex differences in cytochrome P-450 and mixed-function oxygenase activity in gonadally mature trout. Biochem Pharmacol. 1980 Feb 15;29(4):553–558. doi: 10.1016/0006-2952(80)90375-5. [DOI] [PubMed] [Google Scholar]
- Stegeman J. J., Pajor A. M., Thomas P. Influence of estradiol and testosterone on cytochrome P-450 and monooxygenase activity in immature brook trout, Salvelinus fontinalis. Biochem Pharmacol. 1982 Dec 15;31(24):3979–3989. doi: 10.1016/0006-2952(82)90644-x. [DOI] [PubMed] [Google Scholar]
- Tjessum K., Stegeman J. J. Improvement of reverse-phase high pressure liquid chromatographic resolution of benzo[a]pyrene metabolites using organic amines: application to metabolites produced by fish. Anal Biochem. 1979 Oct 15;99(1):129–135. doi: 10.1016/0003-2697(79)90053-8. [DOI] [PubMed] [Google Scholar]
- Varanasi U., Gmur D. J., Reichert W. L. Effect of environmental temperature on naphthalene metabolism by juvenile starry flounder (Platichthys stellatus). Arch Environ Contam Toxicol. 1981;10(2):203–214. doi: 10.1007/BF01055622. [DOI] [PubMed] [Google Scholar]
- Varanasi U., Nishimoto M., Reichert W. L., Le Eberhart B. T. Comparative metabolism of benzo(a)pyrene and covalent binding to hepatic DNA in English sole, starry flounder, and rat. Cancer Res. 1986 Aug;46(8):3817–3824. [PubMed] [Google Scholar]
- Vodicnik M. J., Elcombe C. R., Lech J. J. The effect of various types of inducing agents on hepatic microsomal monooxygenase activity in rainbow trout. Toxicol Appl Pharmacol. 1981 Jun 30;59(2):364–374. doi: 10.1016/0041-008x(81)90208-8. [DOI] [PubMed] [Google Scholar]
- Vodicnik M. J., Lech J. J. The effect of sex steroids and pregnenolone-16 alpha-carbonitrile on the hepatic microsomal monooxygenase system of rainbow trout (Salmo gairdneri). J Steroid Biochem. 1983 Mar;18(3):323–328. doi: 10.1016/0022-4731(83)90110-3. [DOI] [PubMed] [Google Scholar]
- Vodicnik M. J., Rau L. A., Lech J. J. The effect of monooxygenase inducing agents on the incorporation of [35S]methionine into hepatic microsomal protein of rainbow trout (Salmo gairdneri). Comp Biochem Physiol C. 1984;79(2):271–276. doi: 10.1016/0742-8413(84)90198-1. [DOI] [PubMed] [Google Scholar]
- Williams D. E., Buhler D. R. Benzo[a]pyrene-hydroxylase catalyzed by purified isozymes of cytochrome P-450 from beta-naphthoflavone-fed rainbow trout. Biochem Pharmacol. 1984 Dec 1;33(23):3743–3753. doi: 10.1016/0006-2952(84)90035-2. [DOI] [PubMed] [Google Scholar]
- Williams D. E., Buhler D. R. Purification of cytochromes P-448 from beta-naphthoflavone-treated rainbow trout. Biochim Biophys Acta. 1982 Aug 27;717(3):398–404. doi: 10.1016/0304-4165(82)90280-x. [DOI] [PubMed] [Google Scholar]
- Williams D. E., Buhler D. R. Purified form of cytochrome P-450 from rainbow trout with high activity toward conversion of aflatoxin B1 to aflatoxin B1-2,3-epoxide. Cancer Res. 1983 Oct;43(10):4752–4756. [PubMed] [Google Scholar]
- Williams D. E., Masters B. S., Lech J. J., Buhler D. R. Sex differences in cytochrome P-450 isozyme composition and activity in kidney microsomes of mature rainbow trout. Biochem Pharmacol. 1986 Jun 15;35(12):2017–2023. doi: 10.1016/0006-2952(86)90735-5. [DOI] [PubMed] [Google Scholar]
- Williams D. E., Okita R. T., Buhler D. R., Masters B. S. Regiospecific hydroxylation of lauric acid at the (omega-1) position by hepatic and kidney microsomal cytochromes P-450 from rainbow trout. Arch Biochem Biophys. 1984 Jun;231(2):503–510. doi: 10.1016/0003-9861(84)90414-4. [DOI] [PubMed] [Google Scholar]
- Yoshizawa H., Uchimaru R., Kamataki T., Kato R., Ueno Y. Metabolism and activation of aflatoxin B1 by reconstituted cytochrome P-450 system of rat liver. Cancer Res. 1982 Mar;42(3):1120–1124. [PubMed] [Google Scholar]