Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1987 Apr;71:77–85. doi: 10.1289/ehp.877177

Pollutants as developmental toxicants in aquatic organisms.

J S Weis, P Weis
PMCID: PMC1474356  PMID: 3297667

Abstract

Pollutants, by disrupting metabolic processes, can interfere with development, and, at critical periods of development, can act as teratogens. Such interference with normal development can be used as a bioassay. Some screening tests are based on this phenomenon. As teratogens, pollutants are fairly nonspecific. Many different classes may elicit the same developmental responses. Mechanisms of teratogenicity include disruption of mitosis, interference with transcription and translation, metabolic disturbances in energy utilization, and nutritional deficits. These in turn interfere with cell interactions, migration, and growth. In aquatic organisms, environmental conditions can be critical. Interactions of pollutant effects with salinity and with temperature have been reported. Interactions between toxicants have also been studied; both synergism and antagonism have been reported. Most reports of teratogenesis have been qualitative. Quantitation has usually been in the form of percentages of embryos affected, but when severity of effect is indexed, more critical analysis is allowed. When effects of other developmental processes such as growth are analyzed, quantitation is readily achieved. Regeneration is an especially useful model of both differentiation and growth. These two components of regeneration can be separately analyzed. Dose-response relationships are readily apparent. In comparison to mammalian embryos, the use of embryos of many aquatic species for testing toxicants has certain advantages, including lower cost and maintenance and shorter development times. They respond to many of the same teratogens. A special advantage is availability for continual examination during development so that abnormalities can be observed and recorded as they arise.

Full text

PDF
77

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson P. D., Battle H. I. Effects of chloramphenicol on the development of the zebrafish, Brachydanio rerio. Can J Zool. 1967 Mar;45(2):191–204. doi: 10.1139/z67-026. [DOI] [PubMed] [Google Scholar]
  2. Anderson R. J., Prahlad K. V. The deleterious effects of fungicides and herbicides on Xenopus laevis embryos. Arch Environ Contam Toxicol. 1976;4(3):312–323. doi: 10.1007/BF02221030. [DOI] [PubMed] [Google Scholar]
  3. BATTLE H. I., HISAOKA K. K. Effects of ethyl carbamate (urethan) on the early development of the teleost Brachydanio rerio. Cancer Res. 1952 May;12(5):334–340. [PubMed] [Google Scholar]
  4. Bancroft R., Prahlad K. V. Effect of ethylenebis (dithiocarbamic acid)disodium salt(nabam)and ethylenebis(dithiocarbamato)manganese(maneb) on Xenopus laevis development. Teratology. 1973 Apr;7(2):143–150. doi: 10.1002/tera.1420070205. [DOI] [PubMed] [Google Scholar]
  5. Baumann M., Sander K. Bipartite axiation follows incomplete epiboly in zebrafish embryos treated with chemical teratogens. J Exp Zool. 1984 Jun;230(3):363–376. doi: 10.1002/jez.1402300305. [DOI] [PubMed] [Google Scholar]
  6. Chang L. W., Mak L. L., Martin A. H. Dose-dependent effects of methylmercury on limb regeneration of newts (Triturus viridescens). Environ Res. 1976 Jun;11(3):305–309. doi: 10.1016/0013-9351(76)90091-8. [DOI] [PubMed] [Google Scholar]
  7. Couch J. A., Winstead J. T., Goodman L. R. Kepone-induced scoliosis and its histological consequences in fish. Science. 1977 Aug 5;197(4303):585–587. doi: 10.1126/science.69318. [DOI] [PubMed] [Google Scholar]
  8. Crawford R. B., Wilde C. E., Jr Cellular differentiation in the anamniota. II. Oxygen dependency and energetics requirements during early development of teleosts and urodeles. Exp Cell Res. 1966 Nov-Dec;44(2):453–470. doi: 10.1016/0014-4827(66)90452-6. [DOI] [PubMed] [Google Scholar]
  9. Crawford R. B., Wilde C. E., Jr, Heinemann M. H., Hendler F. J. Morphogenetic disturbances from timed inhibitions of protein synthesis in fundulus. J Embryol Exp Morphol. 1973 Apr;29(2):363–382. [PubMed] [Google Scholar]
  10. Dawson D. A., McCormick C. A., Bantle J. A. Detection of teratogenic substances in acidic mine water samples using the frog embryo teratogenesis assay--Xenopus (FETAX). J Appl Toxicol. 1985 Aug;5(4):234–244. doi: 10.1002/jat.2550050405. [DOI] [PubMed] [Google Scholar]
  11. Devlin E. W., Brammer J. D., Puyear R. L. Effect of toluene on fathead minnow (Pimephales promelas Rafinesque) development. Arch Environ Contam Toxicol. 1985 Sep;14(5):595–603. doi: 10.1007/BF01055390. [DOI] [PubMed] [Google Scholar]
  12. Dial N. A. Methylmercury: some effects on embryogenesis in the Japanese Medaka, Oryzias latipes. Teratology. 1978 Feb;17(1):83–91. doi: 10.1002/tera.1420170116. [DOI] [PubMed] [Google Scholar]
  13. Dixon C., Compher K. The protective action of zinc against the deleterious effects of cadmium in the regenerating forelimb of the adult newt, Notophthalmus viridescens. Growth. 1977 Jun;41(2):95–103. [PubMed] [Google Scholar]
  14. Dumpert K., Zietz E. Platanna (Xenopus laevis) as a test organism for determining the embryotoxic effects of environmental chemicals. Ecotoxicol Environ Saf. 1984 Feb;8(1):55–74. doi: 10.1016/0147-6513(84)90041-1. [DOI] [PubMed] [Google Scholar]
  15. Fingerman S. W. Differences in the effects of fuel oil, an oil dispersant, and three polychlorinated biphenyls on fin regeneration in the Gulf Coast killifish, Fundulus grandis. Bull Environ Contam Toxicol. 1980 Aug;25(2):234–240. doi: 10.1007/BF01985517. [DOI] [PubMed] [Google Scholar]
  16. Heisinger J. F., Green W. Mercuric chloride uptake by eggs of the ricefish and resulting teratogenic effects. Bull Environ Contam Toxicol. 1975 Dec;14(6):665–673. doi: 10.1007/BF01685240. [DOI] [PubMed] [Google Scholar]
  17. Hirsch K. S., Hurley L. S. Relationship of dietary zinc to 6-mercaptopurine teratogenesis and DNA metabolism in the rat. Teratology. 1978 Jun;17(3):303–313. doi: 10.1002/tera.1420170309. [DOI] [PubMed] [Google Scholar]
  18. Hose J. E., Hannah J. B., DiJulio D., Landolt M. L., Miller B. S., Iwaoka W. T., Felton S. P. Effects of benzo(a)pyrene on early development of flatfish. Arch Environ Contam Toxicol. 1982;11(2):167–171. doi: 10.1007/BF01054893. [DOI] [PubMed] [Google Scholar]
  19. Hose J. E. Potential uses of sea urchin embryos for identifying toxic chemicals: description of a bioassay incorporating cytologic, cytogenetic and embryologic endpoints. J Appl Toxicol. 1985 Aug;5(4):245–254. doi: 10.1002/jat.2550050406. [DOI] [PubMed] [Google Scholar]
  20. Laale H. W. Ethanol induced notochord and spinal cord duplications in the embryo of the zebrafish, Brachydanio rerio. J Exp Zool. 1971 May;177(1):51–64. doi: 10.1002/jez.1401770107. [DOI] [PubMed] [Google Scholar]
  21. Landauer W. On teratogenic syndromes of unitary causation but heterologous systemic consequences. Acta Embryol Exp (Palermo) 1977;(3):335–340. [PubMed] [Google Scholar]
  22. Llewellyn G. C., Stephenson G. A., Hofman J. W. Aflatoxin B1 induced toxicity and teratogenicity in japanese Medaka eggs (Oryzias latipes). Toxicon. 1977;15(6):582–587. doi: 10.1016/0041-0101(77)90111-8. [DOI] [PubMed] [Google Scholar]
  23. Manasek F. J., Burnside M. B., Waterman R. E. Myocardial cell shape change as a mechanism of embryonic heart looping. Dev Biol. 1972 Dec;29(4):349–371. doi: 10.1016/0012-1606(72)90077-2. [DOI] [PubMed] [Google Scholar]
  24. Ozoh P. T. Effect of lead on pigment pattern formation in zebrafish (Brachydanio rerio). Bull Environ Contam Toxicol. 1980 Feb;24(2):276–282. doi: 10.1007/BF01608109. [DOI] [PubMed] [Google Scholar]
  25. Ozoh P. T. Effects of reversible incubations of zebrafish eggs in copper and lead ions with or without shell membranes. Bull Environ Contam Toxicol. 1980 Feb;24(2):270–275. doi: 10.1007/BF01608108. [DOI] [PubMed] [Google Scholar]
  26. Proctor N. H., Casida J. E. Organophosphorus and methyl carbamate insecticide teratogenesis: diminished NAD in chicken embryos. Science. 1975 Nov 7;190(4214):580–582. doi: 10.1126/science.171767. [DOI] [PubMed] [Google Scholar]
  27. ROGER J. C., CHAMBERS H., CASIDA J. E. NICOTINIC ACID ANALOGS: EFFECTS ON RESPONSE OF CHICK EMBRYOS AND HENS TO ORGANOPHOSPHATE TOXICANTS. Science. 1964 May 1;144(3618):539–540. doi: 10.1126/science.144.3618.539. [DOI] [PubMed] [Google Scholar]
  28. Ramel C. Geetic effects of organic mercury compounds. I. Cytological investigations on Allium roots. Hereditas. 1969;61(1):208–230. [PubMed] [Google Scholar]
  29. Roales R. R., Perlmutter A. Toxicity of zinc and cygon, applied singly and jointly, to zebrafish embryos. Bull Environ Contam Toxicol. 1974 Oct;12(4):475–480. doi: 10.1007/BF01684985. [DOI] [PubMed] [Google Scholar]
  30. Rombough P. J. The influence of the zona radiata on the toxicities of zinc, lead, mercury, copper and silver ions to embryos of steelhead trout Salmo gairdneri. Comp Biochem Physiol C. 1985;82(1):115–117. doi: 10.1016/0742-8413(85)90216-6. [DOI] [PubMed] [Google Scholar]
  31. Sabourin T. D., Faulk R. T., Goss L. B. The efficacy of three non-mammalian test systems in the identification of chemical teratogens. J Appl Toxicol. 1985 Aug;5(4):227–233. doi: 10.1002/jat.2550050404. [DOI] [PubMed] [Google Scholar]
  32. Schreiweis D. O., Murray G. J. Cardiovascular malformations in Oryzias latipes embryos treated with 2,4,5-trichlorophenoxyacetic acid (2,4,5-T). Teratology. 1976 Dec;14(3):287–290. doi: 10.1002/tera.1420140304. [DOI] [PubMed] [Google Scholar]
  33. Solomon H. M., Weis J. S. Abnormal circulatory development in medaka caused by the insecticides carbaryl, malathion and parathion. Teratology. 1979 Feb;19(1):51–62. doi: 10.1002/tera.1420190109. [DOI] [PubMed] [Google Scholar]
  34. Weis P., Weis J. S. Abnormal locomotion associated with skeletal malformations in the sheepshead minnow, Cyprinodon variegatus, exposed to malathion. Environ Res. 1976 Oct;12(2):196–200. doi: 10.1016/0013-9351(76)90024-4. [DOI] [PubMed] [Google Scholar]
  35. Weis P., Weis J. S. Cadmium acclimation and hormesis in Fundulus heteroclitus during fin regeneration. Environ Res. 1986 Apr;39(2):356–363. doi: 10.1016/s0013-9351(86)80061-5. [DOI] [PubMed] [Google Scholar]
  36. Weis P., Weis J. S. Cardiac malformations and other effects due to insecticides in embryos of the killifish, Fundulus heteroclitus. Teratology. 1974 Dec;10(3):263–267. doi: 10.1002/tera.1420100308. [DOI] [PubMed] [Google Scholar]
  37. Weis P., Weis J. S. Effects of heavy metals on fin regeneration in the killifish, Fundulus heteroclitus. Bull Environ Contam Toxicol. 1976 Aug;16(2):197–202. doi: 10.1007/BF01685227. [DOI] [PubMed] [Google Scholar]
  38. Weis P., Weis J. S. Methylmercury teratogenesis in the killifish, Fundulus heteroclitus. Teratology. 1977 Dec;16(3):317–325. doi: 10.1002/tera.1420160311. [DOI] [PubMed] [Google Scholar]
  39. Wilde C. E., Jr, Crawford R. B. Cellular differentiation in the anamniota. 3. Effects of actinomycin D and cyanide on the morphogenesis of Fundulus. Exp Cell Res. 1966 Nov-Dec;44(2):471–488. doi: 10.1016/0014-4827(66)90453-8. [DOI] [PubMed] [Google Scholar]
  40. Zavanella T., Zaffaroni N. P., Arias E. Abnormal limb regeneration in adult newts exposed to the fungicide Maneb 80. A histological study. J Toxicol Environ Health. 1984;13(4-6):735–745. doi: 10.1080/15287398409530535. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES