Abstract
The first step in metabolic activation of mutagenic and carcinogenic heterocyclic amines has been elucidated to be N-hydroxylation by cytochrome P-448. N-Hydroxyamino compounds are further activated to form N-O-acyl derivatives that readily react with DNA. The adducts between the metabolites of Trp-P-2 and Glu-P-1 and DNA were shown to have a C8-guanylamino structure. In the case of Glu-P-1, modification of guanine in GC clusters occurred preferentially. Glutathione transferases and myeloperoxidase were shown to inactivate some heterocyclic amines or their active metabolites. Hemin and fatty acids bind to and inactivate them. Fibers and other factors from vegetables also work to inactivate heterocyclic amines. Nitrite at low pH also degraded some heterocyclic amines, but those with an imidazole moiety were resistant. Glu-P-1 induced intestinal tumors in a high incidence when fed orally to rats. When 14C-Glu-P-1 was administered by gavage into rats about 50% and 35% were excreted into feces and urine, respectively, within 24 hr. When the bile was collected, around 60% of radioactivity was excreted into it within 24 hr. In the bile, N-acetyl-Glu-P-1 was identified as one of the metabolites of Glu-P-1. It showed a mutagenic activity of about one fourth that of Glu-P-1 with S9 mix. Some radioactivity was also detected in the blood. At 24 hr after administration, most of the radioactivity was found to be bound to erythrocyte beta-globins and serum proteins including albumin.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ames B. N., Lee F. D., Durston W. E. An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc Natl Acad Sci U S A. 1973 Mar;70(3):782–786. doi: 10.1073/pnas.70.3.782. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arimoto S., Ohara Y., Namba T., Negishi T., Hayatsu H. Inhibition of the mutagenicity of amino acid pyrolysis products by hemin and other biological pyrrole pigments. Biochem Biophys Res Commun. 1980 Jan 29;92(2):662–668. doi: 10.1016/0006-291x(80)90384-8. [DOI] [PubMed] [Google Scholar]
- Barnes W. S., Maiello J., Weisburger J. H. In vitro binding of the food mutagen 2-amino-3-methylimidazo[4,5-f]quinoline to dietary fibers. J Natl Cancer Inst. 1983 Apr;70(4):757–760. [PubMed] [Google Scholar]
- Brunori M., Condò S. G., Bellelli A., Giardina B. Hemoglobins from Wistar rat: crystallization of components and intraerythrocytic crystals. Eur J Biochem. 1982 Dec 15;129(2):459–463. doi: 10.1111/j.1432-1033.1982.tb07071.x. [DOI] [PubMed] [Google Scholar]
- Busk L., Ahlborg U. G., Albanus L. Inhibition of protein pyrolysate mutagenicity by retinol (vitamin A). Food Chem Toxicol. 1982 Oct;20(5):535–539. doi: 10.1016/s0278-6915(82)80061-6. [DOI] [PubMed] [Google Scholar]
- Calleman C. J., Ehrenberg L., Jansson B., Osterman-Golkar S., Segerbäck D., Svensson K., Wachtmeister C. A. Monitoring and risk assessment by means of alkyl groups in hemoglobin in persons occupationally exposed to ethylene oxide. J Environ Pathol Toxicol. 1978 Nov-Dec;2(2):427–442. [PubMed] [Google Scholar]
- Ehrenberg L., Hiesche K. D., Osterman-Golkar S., Wenneberg I. Evaluation of genetic risks of alkylating agents: tissue doses in the mouse from air contaminated with ethylene oxide. Mutat Res. 1974 Aug;24(2):83–103. doi: 10.1016/0027-5107(74)90123-7. [DOI] [PubMed] [Google Scholar]
- Elin R. J. A simple method for determining erythrocyte survival in rats using slchromium. Lab Anim Sci. 1973 Oct;23(5):653–656. [PubMed] [Google Scholar]
- FANELLI A. R., ANTONINI E., CAPUTO A. Studies on the structure of hemoglobin. I. Physicochemical properties of human globin. Biochim Biophys Acta. 1958 Dec;30(3):608–615. doi: 10.1016/0006-3002(58)90108-2. [DOI] [PubMed] [Google Scholar]
- Farmer P. B., Bailey E., Lamb J. H., Connors T. A. Approach to the quantitation of alkylated amino acids in haemoglobin by gas chromatography mass spectrometry. Biomed Mass Spectrom. 1980 Jan;7(1):41–46. doi: 10.1002/bms.1200070109. [DOI] [PubMed] [Google Scholar]
- Garrick L. M., Sloan R. L., Ryan T. W., Klonowski T. J., Garrick M. D. Primary structure of the major beta-chain of rat haemoglobins. Biochem J. 1978 Jul 1;173(1):321–330. doi: 10.1042/bj1730321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green L. C., Skipper P. L., Turesky R. J., Bryant M. S., Tannenbaum S. R. In vivo dosimetry of 4-aminobiphenyl in rats via a cysteine adduct in hemoglobin. Cancer Res. 1984 Oct;44(10):4254–4259. [PubMed] [Google Scholar]
- Hashimoto Y., Shudo K., Okamoto T. Activation of a mutagen, 3-amino-1-methyl-5H-pyrido[4,3-b]indole. Identification of 3-hydroxyamino-1-methyl-5H-pyrido[4,3-b]indole and its reacion with DNA. Biochem Biophys Res Commun. 1980 Sep 16;96(1):355–362. doi: 10.1016/0006-291x(80)91222-x. [DOI] [PubMed] [Google Scholar]
- Hashimoto Y., Shudo K., Okamoto T. Metabolic activation of a mutagen, 2-amino-6-methyldipyrido-[1,2-a:3',2'-d]imidazole. Identification of 2-hydroxyamino-6-methyldipyrido [1,2-a:3',2'-d]imidazole and its reaction with DNA. Biochem Biophys Res Commun. 1980 Feb 12;92(3):971–976. doi: 10.1016/0006-291x(80)90797-4. [DOI] [PubMed] [Google Scholar]
- Hashimoto Y., Shudo K. Sequence selective modification of DNA with muta-carcinogenic 2-amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole. Biochem Biophys Res Commun. 1983 Nov 15;116(3):1100–1106. doi: 10.1016/s0006-291x(83)80255-1. [DOI] [PubMed] [Google Scholar]
- Hayatsu H., Arimoto S., Togawa K., Makita M. Inhibitory effect of the ether extract of human feces on activities of mutagens: inhibition by oleic and linoleic acids. Mutat Res. 1981 May;81(3):287–293. doi: 10.1016/0027-5107(81)90117-2. [DOI] [PubMed] [Google Scholar]
- Hughes G. J., de Jong C., Fischer R. W., Winterhalter K. H., Wilson K. J. Modification by simetryn sulphoxide of a specific thiol group in rat haemoglobin. Biochem J. 1981 Oct 1;199(1):61–67. doi: 10.1042/bj1990061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishii K., Yamazoe Y., Kamataki T., Kato R. Metabolic activation of mutagenic tryptophan pyrolysis products by rat liver microsomes. Cancer Res. 1980 Jul;40(7):2596–2600. [PubMed] [Google Scholar]
- Kada T., Kato M., Aikawa K., Kiriyama S. Adsorption of pyrolysate mutagens by vegetable fibers. Mutat Res. 1984 Nov-Dec;141(3-4):149–152. doi: 10.1016/0165-7992(84)90088-5. [DOI] [PubMed] [Google Scholar]
- Kato R., Kamataki T., Yamazoe Y. N-hydroxylation of carcinogenic and mutagenic aromatic amines. Environ Health Perspect. 1983 Mar;49:21–25. doi: 10.1289/ehp.834921. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller E. C. Some current perspectives on chemical carcinogenesis in humans and experimental animals: Presidential Address. Cancer Res. 1978 Jun;38(6):1479–1496. [PubMed] [Google Scholar]
- Mochizuki H., Kada T. Antimutagenic action of cobaltous chloride on Trp-P-1-induced mutations in Salmonella typhimurium TA98 and TA1538. Mutat Res. 1982 Aug;95(2-3):145–157. doi: 10.1016/0027-5107(82)90253-6. [DOI] [PubMed] [Google Scholar]
- Morita K., Kada T., Namiki M. A desmutagenic factor isolated from burdock (Arctium lappa Linne). Mutat Res. 1984 Oct;129(1):25–31. doi: 10.1016/0027-5107(84)90119-2. [DOI] [PubMed] [Google Scholar]
- Nagao M., Fujita Y., Wakabayashi K., Sugimura T. Ultimate forms of mutagenic and carcinogenic heterocyclic amines produced by pyrolysis. Biochem Biophys Res Commun. 1983 Jul 29;114(2):626–631. doi: 10.1016/0006-291x(83)90826-4. [DOI] [PubMed] [Google Scholar]
- Okamoto T., Shudo K., Hashimoto Y., Kosuge T., Sugimura T., Nishimura S. Identification of a reactive metabolite of the mutagen, 2-amino-3-methylimidazolo[4,5-f]quinoline. Chem Pharm Bull (Tokyo) 1981 Feb;29(2):590–593. doi: 10.1248/cpb.29.590. [DOI] [PubMed] [Google Scholar]
- Pereira M. A., Chang L. W. Binding of chemical carcinogens and mutagens to rat hemoglobin. Chem Biol Interact. 1981 Jan;33(2-3):301–305. doi: 10.1016/0009-2797(81)90048-x. [DOI] [PubMed] [Google Scholar]
- Poirier M. C. Antibodies to carcinogen-DNA adducts. J Natl Cancer Inst. 1981 Sep;67(3):515–519. [PubMed] [Google Scholar]
- Saito K., Yamazoe Y., Kamataki T., Kato R. Activation and detoxication of N-hydroxy-Trp-P-2 by glutathione and glutathione transferases. Carcinogenesis. 1983 Dec;4(12):1551–1557. doi: 10.1093/carcin/4.12.1551. [DOI] [PubMed] [Google Scholar]
- Saito K., Yamazoe Y., Kamataki T., Kato R. Interactions between the active metabolite of tryptophan pyrolysate mutagen, N-hydroxy-Trp-P-2, and lipids: the role of lipid peroxides in the conversion of N-hydroxy-Trp-P-2 to non-reactive forms. Chem Biol Interact. 1983 Aug 1;45(3):295–304. doi: 10.1016/0009-2797(83)90076-5. [DOI] [PubMed] [Google Scholar]
- Shinohara A., Saito K., Yamazoe Y., Kamataki T., Kato R. DNA binding of N-hydroxy-Trp-P-2 and N-hydroxy-Glu-P-1 by acetyl-CoA dependent enzyme in mammalian liver cytosol. Carcinogenesis. 1985 Feb;6(2):305–307. doi: 10.1093/carcin/6.2.305. [DOI] [PubMed] [Google Scholar]
- Tada M. Seryl-tRNA synthetase and activation of the carcinogen 4-nitroguinoline 1-oxide. Nature. 1975 Jun 5;255(5508):510–512. doi: 10.1038/255510a0. [DOI] [PubMed] [Google Scholar]
- Takayama S., Masuda M., Mogami M., Ohgaki H., Sato S., Sugimura T. Induction of cancers in the intestine, liver and various other organs of rats by feeding mutagens from glutamic acid pyrolysate. Gan. 1984 Mar;75(3):207–213. [PubMed] [Google Scholar]
- Tsuda M., Nagao M., Hirayama T., Sugimura T. Nitrite converts 2-amino-alpha-carboline, an indirect mutagen, into 2-hydroxy-alpha-carboline, a non-mutagen, and 2-hydroxy-3-nitroso-alpha-carboline, a direct mutagen. Mutat Res. 1981 Aug;83(1):61–68. doi: 10.1016/0027-5107(81)90071-3. [DOI] [PubMed] [Google Scholar]
- Tsuda M., Takahashi Y., Nagao M., Hirayama T., Sugimura T. Inactivation of mutagens from pyrolysates of tryptophan and glutamic acid by nitrite in acidic solution. Mutat Res. 1980 Aug;78(4):331–339. doi: 10.1016/0165-1218(80)90038-5. [DOI] [PubMed] [Google Scholar]
- Watanabe J., Kawajiri K., Yonekawa H., Nagao M., Tagashira Y. Immunological analysis of the roles of two major types of cytochrome P-450 in mutagenesis of compounds isolated from pyrolysates. Biochem Biophys Res Commun. 1982 Jan 15;104(1):193–199. doi: 10.1016/0006-291x(82)91958-1. [DOI] [PubMed] [Google Scholar]
- Yamada M., Tsuda M., Nagao M., Mori M., Sugimura T. Degradation of mutagens from pyrolysates of tryptophan, glutamic acid and globulin by myeloperoxidase. Biochem Biophys Res Commun. 1979 Oct 12;90(3):769–776. doi: 10.1016/0006-291x(79)91894-1. [DOI] [PubMed] [Google Scholar]
- Yamazoe Y., Shimada M., Kamataki T., Kato R. Covalent binding of N-hydroxy-Trp-P-2 to DNA by cytosolic proline-dependent system. Biochem Biophys Res Commun. 1982 Jul 16;107(1):165–172. doi: 10.1016/0006-291x(82)91684-9. [DOI] [PubMed] [Google Scholar]
- Yamazoe Y., Shimada M., Kamataki T., Kato R. Microsomal activation of 2-amino-3-methylimidazo[4,5-f]quinoline, a pyrolysate of sardine and beef extracts, to a mutagenic intermediate. Cancer Res. 1983 Dec;43(12 Pt 1):5768–5774. [PubMed] [Google Scholar]
- Yamazoe Y., Tada M., Kamataki T., Kato R. Enhancement of Binding of N-Hydroxy-TRP-P-2 to DNA by seryl-tRNA synthetase. Biochem Biophys Res Commun. 1981 Sep 16;102(1):432–439. doi: 10.1016/0006-291x(81)91539-4. [DOI] [PubMed] [Google Scholar]