Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Apr 1;26(7):1848–1850. doi: 10.1093/nar/26.7.1848

An improved PCR-mutagenesis strategy for two-site mutagenesis or sequence swapping between related genes.

R D Kirsch 1, E Joly 1
PMCID: PMC147442  PMID: 9512562

Abstract

The QuikChangeTM protocol is one of the simplest and fastest methods for site-directed mutagenesis, but introduces mutations at only one site at a time, and requires two HPLC-purified complementary oligonucleotides. Here, we describe that this method can be used with non-overlapping oligonucleotides. By doing this, two separate sites can be mutagenised simultaneously, or money can be saved by using a second 'standard' oligonucleotide. By a further modification, we have also used the QuikChangeTM approach to exchange DNA sequences between closely related genes.

Full Text

The Full Text of this article is available as a PDF (89.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Airaksinen A., Hovi T. Modified base compositions at degenerate positions of a mutagenic oligonucleotide enhance randomness in site-saturation mutagenesis. Nucleic Acids Res. 1998 Jan 15;26(2):576–581. doi: 10.1093/nar/26.2.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aiyar A., Leis J. Modification of the megaprimer method of PCR mutagenesis: improved amplification of the final product. Biotechniques. 1993 Mar;14(3):366–369. [PubMed] [Google Scholar]
  3. Barik S., Galinski M. S. "Megaprimer" method of PCR: increased template concentration improves yield. Biotechniques. 1991 Apr;10(4):489–490. [PubMed] [Google Scholar]
  4. Chattopadhyay D., Raha T., Chattopadhyay D. PCR mutagenesis: treatment of the megaprimer with mung bean nuclease improves yield. Biotechniques. 1997 Jun;22(6):1054–1056. doi: 10.2144/97226bm09. [DOI] [PubMed] [Google Scholar]
  5. Georgiev O., Bourquin J. P., Gstaiger M., Knoepfel L., Schaffner W., Hovens C. Two versatile eukaryotic vectors permitting epitope tagging, radiolabelling and nuclear localisation of expressed proteins. Gene. 1996 Feb 12;168(2):165–167. doi: 10.1016/0378-1119(95)00764-4. [DOI] [PubMed] [Google Scholar]
  6. Horton R. M., Ho S. N., Pullen J. K., Hunt H. D., Cai Z., Pease L. R. Gene splicing by overlap extension. Methods Enzymol. 1993;217:270–279. doi: 10.1016/0076-6879(93)17067-f. [DOI] [PubMed] [Google Scholar]
  7. Horton R. M. PCR-mediated recombination and mutagenesis. SOEing together tailor-made genes. Mol Biotechnol. 1995 Apr;3(2):93–99. doi: 10.1007/BF02789105. [DOI] [PubMed] [Google Scholar]
  8. Joly E., Clarkson C., Howard J. C., Butcher G. W. Isolation of a functional cDNA encoding the RT1.Au MHC class I heavy chain by a novel PCR-based method. Immunogenetics. 1995;41(5):326–328. doi: 10.1007/BF00172159. [DOI] [PubMed] [Google Scholar]
  9. Joly E., Leong L., Coadwell W. J., Clarkson C., Butcher G. W. The rat MHC haplotype RT1c expresses two classical class I molecules. J Immunol. 1996 Aug 15;157(4):1551–1558. [PubMed] [Google Scholar]
  10. Ke S. H., Madison E. L. Rapid and efficient site-directed mutagenesis by single-tube 'megaprimer' PCR method. Nucleic Acids Res. 1997 Aug 15;25(16):3371–3372. doi: 10.1093/nar/25.16.3371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ke S. H., Madison E. L. Rapid and efficient site-directed mutagenesis by single-tube 'megaprimer' PCR method. Nucleic Acids Res. 1997 Aug 15;25(16):3371–3372. doi: 10.1093/nar/25.16.3371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Naper C., Rolstad B., Wonigeit K., Butcher G. W., Vaage J. T. Genes in two MHC class I regions control recognition of a single rat NK cell allodeterminant. Int Immunol. 1996 Nov;8(11):1779–1785. doi: 10.1093/intimm/8.11.1779. [DOI] [PubMed] [Google Scholar]
  13. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  14. Sarkar G., Sommer S. S. The "megaprimer" method of site-directed mutagenesis. Biotechniques. 1990 Apr;8(4):404–407. [PubMed] [Google Scholar]
  15. Shao Z., Zhao H., Giver L., Arnold F. H. Random-priming in vitro recombination: an effective tool for directed evolution. Nucleic Acids Res. 1998 Jan 15;26(2):681–683. doi: 10.1093/nar/26.2.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Smith A. M., Klugman K. P. "Megaprimer" method of PCR-based mutagenesis: the concentration of megaprimer is a critical factor. Biotechniques. 1997 Mar;22(3):438–442. doi: 10.2144/97223bm13. [DOI] [PubMed] [Google Scholar]
  17. Séraphin B., Kandels-Lewis S. An efficient PCR mutagenesis strategy without gel purification [correction of "purificiation"] step that is amenable to automation. Nucleic Acids Res. 1996 Aug 15;24(16):3276–3277. doi: 10.1093/nar/24.16.3276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Upender M., Raj L., Weir M. Megaprimer method for in vitro mutagenesis using parallel templates. Biotechniques. 1995 Jan;18(1):29-30, 32. [PubMed] [Google Scholar]
  19. Urban A., Neukirchen S., Jaeger K. E. A rapid and efficient method for site-directed mutagenesis using one-step overlap extension PCR. Nucleic Acids Res. 1997 Jun 1;25(11):2227–2228. doi: 10.1093/nar/25.11.2227. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES