Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Apr 1;26(7):1769–1774. doi: 10.1093/nar/26.7.1769

Specific tandem GG to TT base substitutions induced by acetaldehyde are due to intra-strand crosslinks between adjacent guanine bases.

T Matsuda 1, M Kawanishi 1, T Yagi 1, S Matsui 1, H Takebe 1
PMCID: PMC147446  PMID: 9512551

Abstract

Acetaldehyde is present in tobacco smoke and automotive exhaust gases, is produced by the oxidation of ethanol, and causes respiratory organ cancers in animals. We show both the types and spectra of acetaldehyde-induced mutations in supF genes in double- and single-stranded shuttle vector plasmids replicated in human cells. Of the 101 mutants obtained from the double-stranded plasmids, 63% had tandem base substitutions, of which the predominant type is GG to TT transversions. Of the 44 mutants obtained from the single-stranded plasmids, 39% had tandem mutations that are of a different type than the double-stranded ones. The GG to TT tandem substitutions could arise from intra-strand crosslinks. Our data indicate that acetaldehyde forms intra- as well as inter-strand crosslinks between adjacent two-guanine bases. Based upon the following observations: XP-A protein binds to acetaldehyde-treated DNA, DNA excision repair-deficient xeroderma pigmentosum (XP) cells were more sensitive to acetaldehyde than the repair-proficient normal cells, and a higher frequency of acetaldehyde-induced mutations of the shuttle vectors was found in XP cells than in normal cells, we propose that the DNA damage caused by acetaldehyde is removed by the nucleotide excision repair pathway. Since treatment with acetaldehyde yields very specific GG to TT tandem base substitutions in DNA, such changes can be used as a probe to identify acetaldehyde as the causal agent in human tumors.

Full Text

The Full Text of this article is available as a PDF (153.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akasaka S., Takimoto K., Yamamoto K. G:C-->T:A and G:C-->C:G transversions are the predominant spontaneous mutations in the Escherichia coli supF gene: an improved lacZ(am) E. coli host designed for assaying pZ189 supF mutational specificity. Mol Gen Genet. 1992 Nov;235(2-3):173–178. doi: 10.1007/BF00279358. [DOI] [PubMed] [Google Scholar]
  2. Bariliak I. R., Kozachuk S. Iu. Embriotoksicheskaia i mutagennaia aktivnost' étanola i atsetal'degida pri vnutriamnioticheskom vozdeistvii. Tsitol Genet. 1983 Sep-Oct;17(5):57–60. [PubMed] [Google Scholar]
  3. Brash D. E., Rudolph J. A., Simon J. A., Lin A., McKenna G. J., Baden H. P., Halperin A. J., Pontén J. A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10124–10128. doi: 10.1073/pnas.88.22.10124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bressac B., Kew M., Wands J., Ozturk M. Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. Nature. 1991 Apr 4;350(6317):429–431. doi: 10.1038/350429a0. [DOI] [PubMed] [Google Scholar]
  5. Bubley G. J., Ashburner B. P., Teicher B. A. Spectrum of cis-diamminedichloroplatinum(II)-induced mutations in a shuttle vector propagated in human cells. Mol Carcinog. 1991;4(5):397–406. doi: 10.1002/mc.2940040512. [DOI] [PubMed] [Google Scholar]
  6. Chaw Y. F., Crane L. E., Lange P., Shapiro R. Isolation and identification of cross-links from formaldehyde-treated nucleic acids. Biochemistry. 1980 Nov 25;19(24):5525–5531. doi: 10.1021/bi00565a010. [DOI] [PubMed] [Google Scholar]
  7. Dellarco V. L. A mutagenicity assessment of acetaldehyde. Mutat Res. 1988 Jan;195(1):1–20. doi: 10.1016/0165-1110(88)90013-9. [DOI] [PubMed] [Google Scholar]
  8. Drobetsky E. A., Grosovsky A. J., Glickman B. W. The specificity of UV-induced mutations at an endogenous locus in mammalian cells. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9103–9107. doi: 10.1073/pnas.84.24.9103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fang J. L., Vaca C. E. Detection of DNA adducts of acetaldehyde in peripheral white blood cells of alcohol abusers. Carcinogenesis. 1997 Apr;18(4):627–632. doi: 10.1093/carcin/18.4.627. [DOI] [PubMed] [Google Scholar]
  10. Grafström R. C., Dypbukt J. M., Sundqvist K., Atzori L., Nielsen I., Curren R. D., Harris C. C. Pathobiological effects of acetaldehyde in cultured human epithelial cells and fibroblasts. Carcinogenesis. 1994 May;15(5):985–990. doi: 10.1093/carcin/15.5.985. [DOI] [PubMed] [Google Scholar]
  11. Harris C. C., Hollstein M. Clinical implications of the p53 tumor-suppressor gene. N Engl J Med. 1993 Oct 28;329(18):1318–1327. doi: 10.1056/NEJM199310283291807. [DOI] [PubMed] [Google Scholar]
  12. He S. M., Lambert B. Induction and persistence of SCE-inducing damage in human lymphocytes exposed to vinyl acetate and acetaldehyde in vitro. Mutat Res. 1985 Dec;158(3):201–208. doi: 10.1016/0165-1218(85)90086-2. [DOI] [PubMed] [Google Scholar]
  13. Hollstein M., Rice K., Greenblatt M. S., Soussi T., Fuchs R., Sørlie T., Hovig E., Smith-Sørensen B., Montesano R., Harris C. C. Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res. 1994 Sep;22(17):3551–3555. [PMC free article] [PubMed] [Google Scholar]
  14. Hori H., Kawano T., Endo M., Yuasa Y. Genetic polymorphisms of tobacco- and alcohol-related metabolizing enzymes and human esophageal squamous cell carcinoma susceptibility. J Clin Gastroenterol. 1997 Dec;25(4):568–575. doi: 10.1097/00004836-199712000-00003. [DOI] [PubMed] [Google Scholar]
  15. Korte A., Obe G., Ingwersen I., Rückert G. Influence of chronic ethanol uptake and acute acetaldehyde treatment on the chromosomes of bone-marrow cells and peripheral lymphocytes of Chinese hamsters. Mutat Res. 1981 Apr;88(4):389–395. doi: 10.1016/0165-1218(81)90030-6. [DOI] [PubMed] [Google Scholar]
  16. Levy D. D., Groopman J. D., Lim S. E., Seidman M. M., Kraemer K. H. Sequence specificity of aflatoxin B1-induced mutations in a plasmid replicated in xeroderma pigmentosum and DNA repair proficient human cells. Cancer Res. 1992 Oct 15;52(20):5668–5673. [PubMed] [Google Scholar]
  17. Matsuda T., Yagi T., Kawanishi M., Matsui S., Takebe H. Molecular analysis of mutations induced by 2-chloroacetaldehyde, the ultimate carcinogenic form of vinyl chloride, in human cells using shuttle vectors. Carcinogenesis. 1995 Oct;16(10):2389–2394. doi: 10.1093/carcin/16.10.2389. [DOI] [PubMed] [Google Scholar]
  18. Obe G., Natarajan A. T., Meyers M., Hertog A. D. Induction of chromosomal aberrations in peripheral lymphocytes of human blood in vitro, and of SCEs in bone-marrow cells of mice in vivo by ethanol and its metabolite acetaldehyde. Mutat Res. 1979 Nov;68(3):291–294. doi: 10.1016/0165-1218(79)90160-5. [DOI] [PubMed] [Google Scholar]
  19. Randerath K., Randerath E., Smith C. V., Chang J. Structural origins of bulky oxidative DNA adducts (type II I-compounds) as deduced by oxidation of oligonucleotides of known sequence. Chem Res Toxicol. 1996 Jan-Feb;9(1):247–254. doi: 10.1021/tx950085v. [DOI] [PubMed] [Google Scholar]
  20. Reid T. M., Feig D. I., Loeb L. A. Mutagenesis by metal-induced oxygen radicals. Environ Health Perspect. 1994 Sep;102 (Suppl 3):57–61. doi: 10.1289/ehp.94102s357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ristow H., Obe G. Acetaldehyde induces cross-links in DNA and causes sister-chromatid exchanges in human cells. Mutat Res. 1978 Sep;58(1):115–119. doi: 10.1016/0165-1218(78)90103-9. [DOI] [PubMed] [Google Scholar]
  22. Robins P., Jones C. J., Biggerstaff M., Lindahl T., Wood R. D. Complementation of DNA repair in xeroderma pigmentosum group A cell extracts by a protein with affinity for damaged DNA. EMBO J. 1991 Dec;10(12):3913–3921. doi: 10.1002/j.1460-2075.1991.tb04961.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sato M., Nishigori C., Zghal M., Yagi T., Takebe H. Ultraviolet-specific mutations in p53 gene in skin tumors in xeroderma pigmentosum patients. Cancer Res. 1993 Jul 1;53(13):2944–2946. [PubMed] [Google Scholar]
  24. Vaca C. E., Fang J. L., Schweda E. K. Studies of the reaction of acetaldehyde with deoxynucleosides. Chem Biol Interact. 1995 Oct 20;98(1):51–67. doi: 10.1016/0009-2797(95)03632-v. [DOI] [PubMed] [Google Scholar]
  25. Yagi T., Tatsumi-Miyajima J., Sato M., Kraemer K. H., Takebe H. Analysis of point mutations in an ultraviolet-irradiated shuttle vector plasmid propagated in cells from Japanese xeroderma pigmentosum patients in complementation groups A and F. Cancer Res. 1991 Jun 15;51(12):3177–3182. [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES