Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1987 Dec;76:19–27. doi: 10.1289/ehp.877619

Inflammation, oxidative DNA damage, and carcinogenesis.

J G Lewis 1, D O Adams 1
PMCID: PMC1474481  PMID: 3129286

Abstract

Inflammation has long been associated with carcinogenesis, especially in the promotion phase. The mechanism of action of the potent inflammatory agent and skin promoter 12-tetradecanoyl phorbol-13-acetate (TPA) is unknown. It is thought that TPA selectively enhances the growth of initiated cells, and during this process, initiated cells progress to the preneoplastic state and eventually to the malignant phenotype. Many studies support the multistep nature of carcinogenesis, and a significant amount of evidence indicates that more than one genetic event is necessary for neoplastic transformation. Selective growth stimulation of initiated cells by TPA does not explain how further genetic events may occur by chronic exposure to this nongenotoxic agent. We and others have proposed that TPA may work, in part, by inciting inflammation and stimulating inflammatory cells to release powerful oxidants which then induce DNA damage in epidermal cells. Macrophages cocultured with target cells and TPA induce oxidized thymine bases in the target cells. This process is inhibited by both catalase and inhibitors of lipoxygenases, suggesting the involvement of both H2O2 and oxidized lipid products. Furthermore, macrophage populations that release both H2O2 and metabolites of arachidonic acid (AA) are more efficient at inducing oxidative DNA damage in surrounding cells than populations which only release H2O2 or metabolites of AA. In vivo studies demonstrated that SENCAR mice, which are sensitive to promotion by TPA, have a more intense inflammatory reaction in skin than C57LB/6 mice, which are resistant to promotion by TPA. In addition, macrophages from SENCAR mice release more H2O2 and metabolites of AA, and induce more oxidative DNA damage in cocultured cells than macrophages from C57LB/6 mice.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
19

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams D. O. Effector mechanisms of cytolytically activated macrophages. I. Secretion of neutral proteases and effect of protease inhibitors. J Immunol. 1980 Jan;124(1):286–292. [PubMed] [Google Scholar]
  2. Adams D. O., Hamilton T. A. The cell biology of macrophage activation. Annu Rev Immunol. 1984;2:283–318. doi: 10.1146/annurev.iy.02.040184.001435. [DOI] [PubMed] [Google Scholar]
  3. BOUTWELL R. K. SOME BIOLOGICAL ASPECTS OF SKIN CARCINOGENISIS. Prog Exp Tumor Res. 1964;4:207–250. doi: 10.1159/000385978. [DOI] [PubMed] [Google Scholar]
  4. Birnboim H. C. DNA strand breakage in human leukocytes exposed to a tumor promoter, phorbol myristate acetate. Science. 1982 Mar 5;215(4537):1247–1249. doi: 10.1126/science.6276978. [DOI] [PubMed] [Google Scholar]
  5. CRUICKSHANK A. H., MCCONNELL E. M., MILLER D. G. MALIGNANCY IN SCARS, CHRONIC ULCERS, AND SINUSES. J Clin Pathol. 1963 Nov;16:573–580. doi: 10.1136/jcp.16.6.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chester J. F., Gaissert H. A., Ross J. S., Malt R. A., Weitzman S. A. Augmentation of 1,2-dimethylhydrazine-induced colon cancer by experimental colitis in mice: role of dietary vitamin E. J Natl Cancer Inst. 1986 May;76(5):939–942. [PubMed] [Google Scholar]
  7. Chester J. F., Ross J. S., Malt R. A., Weitzman S. A. Acute colitis produced by chemotactic peptides in rats and mice. Am J Pathol. 1985 Nov;121(2):284–290. [PMC free article] [PubMed] [Google Scholar]
  8. Emerit I., Cerutti P. A. Tumour promoter phorbol-12-myristate-13-acetate induces chromosomal damage via indirect action. Nature. 1981 Sep 10;293(5828):144–146. doi: 10.1038/293144a0. [DOI] [PubMed] [Google Scholar]
  9. Fischer S. M., Baldwin J. K., Adams L. M. Effects of anti-promoters and strain of mouse on tumor promoter-induced oxidants in murine epidermal cells. Carcinogenesis. 1986 Jun;7(6):915–918. doi: 10.1093/carcin/7.6.915. [DOI] [PubMed] [Google Scholar]
  10. Fürstenberger G., Kinzel V., Schwarz M., Marks F. Partial inversion of the initiation-promotion sequence of multistage tumorigenesis in the skin of NMRI mice. Science. 1985 Oct 4;230(4721):76–78. doi: 10.1126/science.3929385. [DOI] [PubMed] [Google Scholar]
  11. GOLDGRABER M. B., HUMPHREYS E. M., KIRSNER J. B., PALMER W. L. Carcinoma and ulcerative colitis, a clinical-pathologic study. II. Statistical analysis. Gastroenterology. 1958 May;34(5):840–846. [PubMed] [Google Scholar]
  12. Goldstein B. D., Witz G., Amoruso M., Stone D. S., Troll W. Stimulation of human polymorphonuclear leukocyte superoxide anion radical production by tumor promoters. Cancer Lett. 1981 Jan;11(3):257–262. doi: 10.1016/0304-3835(81)90117-8. [DOI] [PubMed] [Google Scholar]
  13. Hariharan P. V., Cerutti P. A. Excision of damaged thymine residues from gamma-irradiated poly(dA-dT) by crude extracts of Escherichia coli. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3532–3536. doi: 10.1073/pnas.71.9.3532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kennedy A. R., Troll W., Little J. B. Role of free radicals in the initiation and promotion of radiation transformation in vitro. Carcinogenesis. 1984 Oct;5(10):1213–1218. doi: 10.1093/carcin/5.10.1213. [DOI] [PubMed] [Google Scholar]
  15. Land H., Parada L. F., Weinberg R. A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature. 1983 Aug 18;304(5927):596–602. doi: 10.1038/304596a0. [DOI] [PubMed] [Google Scholar]
  16. Lewis J. G., Adams D. O. Early inflammatory changes in the skin of SENCAR and C57BL/6 mice following exposure to 12-O-tetradecanoylphorbol-13-acetate. Carcinogenesis. 1987 Jul;8(7):889–898. doi: 10.1093/carcin/8.7.889. [DOI] [PubMed] [Google Scholar]
  17. Lewis J. G., Adams D. O. Enhanced release of hydrogen peroxide and metabolites of arachidonic acid by macrophages from SENCAR mice following stimulation with phorbol esters. Cancer Res. 1986 Nov;46(11):5696–5700. [PubMed] [Google Scholar]
  18. Lewis J. G., Adams D. O. Induction of 5,6-ring-saturated thymine bases in NIH-3T3 cells by phorbol ester-stimulated macrophages: role of reactive oxygen intermediates. Cancer Res. 1985 Mar;45(3):1270–1275. [PubMed] [Google Scholar]
  19. Lewis J. G., Hamilton T., Adams D. O. The effect of macrophage development on the release of reactive oxygen intermediates and lipid oxidation products, and their ability to induce oxidative DNA damage in mammalian cells. Carcinogenesis. 1986 May;7(5):813–818. doi: 10.1093/carcin/7.5.813. [DOI] [PubMed] [Google Scholar]
  20. Miller D. R., Viaje A., Aldaz C. M., Conti C. J., Slaga T. J. Terminal differentiation-resistant epidermal cells in mice undergoing two-stage carcinogenesis. Cancer Res. 1987 Apr 1;47(7):1935–1940. [PubMed] [Google Scholar]
  21. Nathan C. F., Root R. K. Hydrogen peroxide release from mouse peritoneal macrophages: dependence on sequential activation and triggering. J Exp Med. 1977 Dec 1;146(6):1648–1662. doi: 10.1084/jem.146.6.1648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pick E., Keisari Y. A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J Immunol Methods. 1980;38(1-2):161–170. doi: 10.1016/0022-1759(80)90340-3. [DOI] [PubMed] [Google Scholar]
  23. Reiners J. J., Jr, Nesnow S., Slaga T. J. Murine susceptibility to two-stage skin carcinogenesis is influenced by the agent used for promotion. Carcinogenesis. 1984 Mar;5(3):301–307. doi: 10.1093/carcin/5.3.301. [DOI] [PubMed] [Google Scholar]
  24. Slaga T. J., Fischer S. M., Nelson K., Gleason G. L. Studies on the mechanism of skin tumor promotion: evidence for several stages in promotion. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3659–3663. doi: 10.1073/pnas.77.6.3659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Slaga T. J., Fischer S. M., Weeks C. E., Nelson K., Mamrack M., Klein-Szanto A. J. Specificity and mechanism(s) of promoter inhibitors in multistage promotion. Carcinog Compr Surv. 1982;7:19–34. [PubMed] [Google Scholar]
  26. Slaga T. J., Klein-Szanto A. J., Triplett L. L., Yotti L. P., Trosko K. E. Skin tumor-promoting activity of benzoyl peroxide, a widely used free radical-generating compound. Science. 1981 Aug 28;213(4511):1023–1025. doi: 10.1126/science.6791284. [DOI] [PubMed] [Google Scholar]
  27. Weitzman S. A., Stossel T. P. Effects of oxygen radical scavengers and antioxidants on phagocyte-induced mutagenesis. J Immunol. 1982 Jun;128(6):2770–2772. [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES