Abstract
Variable regions within ribosomal RNAs frequently vary in length as a result of incorporating products of slippage. This makes constructing secondary structure models problematic because base homology is difficult or impossible to establish between species. Here, we model such a region by comparing the results of the MFOLD suboptimal folding algorithm for different species to identify conserved structures. Based on the reconstruction of base change on a phylogenetic tree of the species and comparison against null models of character change, we devise a statistical analysis to assess support of these structures from compensatory and semi-compensatory (i.e. G.C to G.U or A.U to G.U) mutations. As a model system we have used variable region V4 from cicindelid (tiger beetle) small subunit ribosomal RNAs (SSU rRNAs). This consists of a mixture of conserved and highly variable subregions and has been subject to extensive comparative analysis in the past. The model that results is similar to a previously described model of this variable region derived from a different set of species and contains a novel structure in the central, highly variable part. The method we describe may be useful in modelling other RNA regions that are subject to slippage.
Full Text
The Full Text of this article is available as a PDF (488.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brockdorff N., Ashworth A., Kay G. F., McCabe V. M., Norris D. P., Cooper P. J., Swift S., Rastan S. The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell. 1992 Oct 30;71(3):515–526. doi: 10.1016/0092-8674(92)90519-i. [DOI] [PubMed] [Google Scholar]
- De Rijk P., Neefs J. M., Van de Peer Y., De Wachter R. Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res. 1992 May 11;20 (Suppl):2075–2089. doi: 10.1093/nar/20.suppl.2075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gutell R. R., Larsen N., Woese C. R. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol Rev. 1994 Mar;58(1):10–26. doi: 10.1128/mr.58.1.10-26.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hancock J. M., Chaleeprom W., Chaleeprom W., Dale J., Gibbs A. Replication slippage in the evolution of potyviruses. J Gen Virol. 1995 Dec;76(Pt 12):3229–3232. doi: 10.1099/0022-1317-76-12-3229. [DOI] [PubMed] [Google Scholar]
- Hancock J. M., Dover G. A. Molecular coevolution among cryptically simple expansion segments of eukaryotic 26S/28S rRNAs. Mol Biol Evol. 1988 Jul;5(4):377–391. doi: 10.1093/oxfordjournals.molbev.a040505. [DOI] [PubMed] [Google Scholar]
- Hancock J. M., Tautz D., Dover G. A. Evolution of the secondary structures and compensatory mutations of the ribosomal RNAs of Drosophila melanogaster. Mol Biol Evol. 1988 Jul;5(4):393–414. doi: 10.1093/oxfordjournals.molbev.a040501. [DOI] [PubMed] [Google Scholar]
- Hancock J. M. The contribution of DNA slippage to eukaryotic nuclear 18S rRNA evolution. J Mol Evol. 1995 Jun;40(6):629–639. doi: 10.1007/BF00160511. [DOI] [PubMed] [Google Scholar]
- Hendriks L., De Baere R., Van Broeckhoven C., De Wachter R. Primary and secondary structure of the 18 S ribosomal RNA of the insect species Tenebrio molitor. FEBS Lett. 1988 May 9;232(1):115–120. doi: 10.1016/0014-5793(88)80398-3. [DOI] [PubMed] [Google Scholar]
- Hickson R. E., Simon C., Cooper A., Spicer G. S., Sullivan J., Penny D. Conserved sequence motifs, alignment, and secondary structure for the third domain of animal 12S rRNA. Mol Biol Evol. 1996 Jan;13(1):150–169. doi: 10.1093/oxfordjournals.molbev.a025552. [DOI] [PubMed] [Google Scholar]
- Hoelzel A. R., Hancock J. M., Dover G. A. Generation of VNTRs and heteroplasmy by sequence turnover in the mitochondrial control region of two elephant seal species. J Mol Evol. 1993 Aug;37(2):190–197. doi: 10.1007/BF02407355. [DOI] [PubMed] [Google Scholar]
- Jaeger J. A., Turner D. H., Zuker M. Predicting optimal and suboptimal secondary structure for RNA. Methods Enzymol. 1990;183:281–306. doi: 10.1016/0076-6879(90)83019-6. [DOI] [PubMed] [Google Scholar]
- Kwon O. Y., Ogino K., Ishikawa H. The longest 18S ribosomal RNA ever known. Nucleotide sequence and presumed secondary structure of the 18S rRNA of the pea aphid, Acyrthosiphon pisum. Eur J Biochem. 1991 Dec 18;202(3):827–833. doi: 10.1111/j.1432-1033.1991.tb16439.x. [DOI] [PubMed] [Google Scholar]
- Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. The RDP (Ribosomal Database Project). Nucleic Acids Res. 1997 Jan 1;25(1):109–111. doi: 10.1093/nar/25.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neefs J. M., De Wachter R. A proposal for the secondary structure of a variable area of eukaryotic small ribosomal subunit RNA involving the existence of a pseudoknot. Nucleic Acids Res. 1990 Oct 11;18(19):5695–5704. doi: 10.1093/nar/18.19.5695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nickrent D. L., Sargent M. L. An overview of the secondary structure of the V4 region of eukaryotic small-subunit ribosomal RNA. Nucleic Acids Res. 1991 Jan 25;19(2):227–235. doi: 10.1093/nar/19.2.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schnare M. N., Damberger S. H., Gray M. W., Gutell R. R. Comprehensive comparison of structural characteristics in eukaryotic cytoplasmic large subunit (23 S-like) ribosomal RNA. J Mol Biol. 1996 Mar 8;256(4):701–719. doi: 10.1006/jmbi.1996.0119. [DOI] [PubMed] [Google Scholar]
- Tautz D., Hancock J. M., Webb D. A., Tautz C., Dover G. A. Complete sequences of the rRNA genes of Drosophila melanogaster. Mol Biol Evol. 1988 Jul;5(4):366–376. doi: 10.1093/oxfordjournals.molbev.a040500. [DOI] [PubMed] [Google Scholar]
- Van de Peer Y., Jansen J., De Rijk P., De Wachter R. Database on the structure of small ribosomal subunit RNA. Nucleic Acids Res. 1997 Jan 1;25(1):111–116. doi: 10.1093/nar/25.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vawter L., Brown W. M. Rates and patterns of base change in the small subunit ribosomal RNA gene. Genetics. 1993 Jun;134(2):597–608. doi: 10.1093/genetics/134.2.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vogler A. P., Pearson D. L. A molecular phylogeny of the tiger beetles (Cicindelidae): congruence of mitochondrial and nuclear rDNA data sets. Mol Phylogenet Evol. 1996 Dec;6(3):321–338. doi: 10.1006/mpev.1996.0083. [DOI] [PubMed] [Google Scholar]
- Vogler A. P., Welsh A., Hancock J. M. Phylogenetic analysis of slippage-like sequence variation in the V4 rRNA expansion segment in tiger beetles (Cicindelidae). Mol Biol Evol. 1997 Jan;14(1):6–19. doi: 10.1093/oxfordjournals.molbev.a025703. [DOI] [PubMed] [Google Scholar]
- Zuker M., Jaeger J. A., Turner D. H. A comparison of optimal and suboptimal RNA secondary structures predicted by free energy minimization with structures determined by phylogenetic comparison. Nucleic Acids Res. 1991 May 25;19(10):2707–2714. doi: 10.1093/nar/19.10.2707. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zuker M. On finding all suboptimal foldings of an RNA molecule. Science. 1989 Apr 7;244(4900):48–52. doi: 10.1126/science.2468181. [DOI] [PubMed] [Google Scholar]
- Zuker M. Prediction of RNA secondary structure by energy minimization. Methods Mol Biol. 1994;25:267–294. doi: 10.1385/0-89603-276-0:267. [DOI] [PubMed] [Google Scholar]