Abstract
The transfer and distribution of paramagnetic manganese was investigated in the dually perfused human placenta in vitro (using 10, 20, 100 microM Mn with and without 54Mn) using magnetic resonance imaging (MRI) and conventional radiochemical techniques. The human placenta concentrated 54Mn rapidly during the first 15 min of perfusion and by 4 hr was four times greater than the concentrations of Mn in the maternal perfusate, while the concentration of Mn in the fetal perfusate was 25% of the maternal perfusate levels. Within placentae, 45% of the 54Mn was free in the 100,000g supernatant, with 45% in the 1,000g pellet. The magnetic field dependence of proton nuclear spin-lattice relaxation time (T1) in placental tissue supports this Mn binding. Mn primarily affected the MRI partial saturation rather than spin-echo images of the human placenta, which provided for the separation of perfusate contributions from those produced by Mn. The washout of the Mn from the placenta was slow compared with its uptake, as determined by MRI. Thus, Mn was concentrated by the human placenta, but transfer of Mn across the placenta was limited in either direction. These studies also illustrate the opportunity for studies of human placental function using magnetic resonance imaging as a noninvasive biomarker.
Full text
PDF










Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Angtuaco T. L., Mattison D. R., Thomford P. J., Jordan J. Effect of manganese on human placental spin-lattice (T1) and spin-spin (T2) relaxation times. Physiol Chem Phys Med NMR. 1986;18(1):41–48. [PubMed] [Google Scholar]
- Cohen J. M., Weinreb J. C., Lowe T. W., Brown C. MR imaging of a viable full-term abdominal pregnancy. AJR Am J Roentgenol. 1985 Aug;145(2):407–408. doi: 10.2214/ajr.145.2.407. [DOI] [PubMed] [Google Scholar]
- Hambridge K. M., Droegemueller W. Changes in plasma and hair concentrations of zinc, copper, chromium, and manganese during pregnancy. Obstet Gynecol. 1974 Nov;44(5):666–672. [PubMed] [Google Scholar]
- Hanlon D. P., Gale T. F., Ferm V. H. Permeability of the syrian hamster placenta to manganous ions during early embryogenesis. J Reprod Fertil. 1975 Jul;44(1):109–112. doi: 10.1530/jrf.0.0440109. [DOI] [PubMed] [Google Scholar]
- Johnson I. R., Symonds E. M., Kean D. M., Worthington B. S., Broughton Pipkin F., Hawkes R. C., Gyngell M. Imaging the pregnant human uterus with nuclear magnetic resonance. Am J Obstet Gynecol. 1984 Apr 15;148(8):1136–1139. doi: 10.1016/0002-9378(84)90642-2. [DOI] [PubMed] [Google Scholar]
- Kimmel C. A., Butcher R. E., Vorhees C. V., Schumacher H. J. Metal-salt potentiation of salicylate-induced teratogenesis and behavioral changes in rats. Teratology. 1974 Dec;10(3):293–300. doi: 10.1002/tera.1420100312. [DOI] [PubMed] [Google Scholar]
- Lowe T. W., Weinreb J., Santos-Ramos R., Cunningham F. G. Magnetic resonance imaging in human pregnancy. Obstet Gynecol. 1985 Nov;66(5):629–633. [PubMed] [Google Scholar]
- Mena I., Marin O., Fuenzalida S., Cotzias G. C. Chronic manganese poisoning. Clinical picture and manganese turnover. Neurology. 1967 Feb;17(2):128–136. doi: 10.1212/wnl.17.2.128. [DOI] [PubMed] [Google Scholar]
- Miller R. K., Wier P. J., Maulik D., di Sant'Agnese P. A. Human placenta in vitro: characterization during 12 h of dual perfusion. Contrib Gynecol Obstet. 1985;13:77–84. [PubMed] [Google Scholar]
- PENALVER R. Manganese poisoning. Ind Med Surg. 1955 Jan;24(1):1–7. [PubMed] [Google Scholar]
- Powell M. C., Buckley J., Price H., Worthington B. S., Symonds E. M. Magnetic resonance imaging and placenta previa. Am J Obstet Gynecol. 1986 Mar;154(3):565–569. doi: 10.1016/0002-9378(86)90602-2. [DOI] [PubMed] [Google Scholar]
- SCHULER P., OYANGUREN H., MATURANA V., VALENZUELA A., CRUZ E., PLAZA V., SCHMIDT E., HADDAD R. Manganese poisoning; environmental and medical study at a Chilean mine. Ind Med Surg. 1957 Apr;26(4):167–173. [PubMed] [Google Scholar]
- Schneider H., Panigel M., Dancis J. Transfer across the perfused human placenta of antipyrine, sodium and leucine. Am J Obstet Gynecol. 1972 Nov 15;114(6):822–828. doi: 10.1016/0002-9378(72)90909-x. [DOI] [PubMed] [Google Scholar]
- Shah Y. G., Miller R. K. The pharmacokinetics of phenytoin in perfused human placenta. Pediatr Pharmacol (New York) 1985;5(3):165–179. [PubMed] [Google Scholar]
- Smith F. W., Adam A. H., Phillips W. D. NMR imaging in pregnancy. Lancet. 1983 Jan 1;1(8314-5):61–62. doi: 10.1016/s0140-6736(83)91588-x. [DOI] [PubMed] [Google Scholar]
- Weinreb J. C., Lowe T. W., Santos-Ramos R., Cunningham F. G., Parkey R. Magnetic resonance imaging in obstetric diagnosis. Radiology. 1985 Jan;154(1):157–161. doi: 10.1148/radiology.154.1.3880601. [DOI] [PubMed] [Google Scholar]
- Wier P. J., Miller R. K. Oxygen transfer as an indicator of perfusion variability in the isolated human placental lobule. Contrib Gynecol Obstet. 1985;13:127–131. [PubMed] [Google Scholar]








