Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1988 Apr;77:37–44. doi: 10.1289/ehp.887737

Male reproductive toxicology: comparison of the human to animal models.

P K Working 1
PMCID: PMC1474524  PMID: 3289906

Abstract

The human male is of relatively low fertility and thus may be at greater risk from reproductive toxicants than are males of the common laboratory animal model species. Lack of knowledge of the physiological differences that contribute to interspecies variation between man and animals can prevent the effective application of animal data to the assessment of human reproductive risk. Evaluation of spermatogenesis from testicular histology, while uncommon, can provide valuable information about human reproductive risk. The measurement of sperm count or concentration has long been the most feasible approach for human semen evaluation, but may be an insensitive indicator of reproductive function because of high sample-to-sample variability. Interspecies extrapolation factors can be calculated by comparing the reduction in sperm count in humans and test species after exposure to drugs or chemicals. These factors can provide a realistic assessment of relative risk, provided that the sperm are counted at the appropriate time after exposure. However, the degree to which extrapolation factors derived for one agent, and only from sperm counts, can be generalized is not known. Monitoring of sperm motility and morphology parameters is also a common means of evaluating human semen quality, but these techniques are also hampered by the relatively high interindividual and intersample variability. Computer-assisted and morphometric approaches show promise of decreasing the subjective nature of these evaluations and increasing their value in risk assessment procedures. Improvements in predicting human reproductive risk can be expected to come from increased knowledge about reproductive mechanisms in man and animals, together with the utilization of objective measures of cellular indicators of male reproductive function.

Full text

PDF
37

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aafjes J. H., Vels J. M., Schenck E. Fertility of rats with artificial oligozoospermia. J Reprod Fertil. 1980 Mar;58(2):345–351. doi: 10.1530/jrf.0.0580345. [DOI] [PubMed] [Google Scholar]
  2. Aitken R. J., Best F. S., Richardson D. W., Djahanbakhch O., Lees M. M. The correlates of fertilizing capacity in normal fertile men. Fertil Steril. 1982 Jul;38(1):68–76. doi: 10.1016/s0015-0282(16)46398-3. [DOI] [PubMed] [Google Scholar]
  3. Amann R. P., Berndtson W. E. Assessment of procedures for screening agents for effects on male reproduction: effects of dibromochloropropane (DBCP) on the rat. Fundam Appl Toxicol. 1986 Aug;7(2):244–255. doi: 10.1016/0272-0590(86)90154-5. [DOI] [PubMed] [Google Scholar]
  4. Amann R. P. Detection of alterations in testicular and epididymal function in laboratory animals. Environ Health Perspect. 1986 Dec;70:149–158. doi: 10.1289/ehp.8670149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Benaron D. A., Gray J. W., Gledhill B. L., Lake S., Wyrobek A. J., Young I. T. Quantification of mammalian sperm morphology by slit-scan flow cytometry. Cytometry. 1982 Mar;2(5):344–349. doi: 10.1002/cyto.990020512. [DOI] [PubMed] [Google Scholar]
  6. Berndtson W. E. Methods for quantifying mammalian spermatogenesis: a review. J Anim Sci. 1977 May;44(5):818–833. doi: 10.2527/jas1977.445818x. [DOI] [PubMed] [Google Scholar]
  7. Blazak W. F., Ernst T. L., Stewart B. E. Potential indicators of reproductive toxicity: testicular sperm production and epididymal sperm number, transit time, and motility in Fischer 344 rats. Fundam Appl Toxicol. 1985 Dec;5(6 Pt 1):1097–1103. doi: 10.1016/0272-0590(85)90145-9. [DOI] [PubMed] [Google Scholar]
  8. Chellman G. J., Morgan K. T., Bus J. S., Working P. K. Inhibition of methyl chloride toxicity in male F-344 rats by the anti-inflammatory agent BW755C. Toxicol Appl Pharmacol. 1986 Sep 30;85(3):367–379. doi: 10.1016/0041-008x(86)90344-3. [DOI] [PubMed] [Google Scholar]
  9. Clermont Y. Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol Rev. 1972 Jan;52(1):198–236. doi: 10.1152/physrev.1972.52.1.198. [DOI] [PubMed] [Google Scholar]
  10. Davidson I. W., Parker J. C., Beliles R. P. Biological basis for extrapolation across mammalian species. Regul Toxicol Pharmacol. 1986 Sep;6(3):211–237. doi: 10.1016/0273-2300(86)90014-0. [DOI] [PubMed] [Google Scholar]
  11. Garattini S. Toxic effects of chemicals: difficulties in extrapolating data from animals to man. Crit Rev Toxicol. 1985;16(1):1–29. doi: 10.3109/10408448509041323. [DOI] [PubMed] [Google Scholar]
  12. Greenlee W. F., Poland A. Nuclear uptake of 2,3,7,8-tetrachlorodibenzo-p-dioxin in C57BL/6J and DBA/2J mice. Role of the hepatic cytosol receptor protein. J Biol Chem. 1979 Oct 10;254(19):9814–9821. [PubMed] [Google Scholar]
  13. HELLER C. H., CLERMONT Y. KINETICS OF THE GERMINAL EPITHELIUM IN MAN. Recent Prog Horm Res. 1964;20:545–575. [PubMed] [Google Scholar]
  14. Holt W. V., Moore H. D., Hillier S. G. Computer-assisted measurement of sperm swimming speed in human semen: correlation of results with in vitro fertilization assays. Fertil Steril. 1985 Jul;44(1):112–119. doi: 10.1016/s0015-0282(16)48687-5. [DOI] [PubMed] [Google Scholar]
  15. Hurtt M. E., Zenick H. Decreasing epididymal sperm reserves enhances the detection of ethoxyethanol-induced spermatotoxicity. Fundam Appl Toxicol. 1986 Aug;7(2):348–353. doi: 10.1016/0272-0590(86)90165-x. [DOI] [PubMed] [Google Scholar]
  16. Jagoe J. R., Washbrook N. P., Hudson E. A. Morphometry of spermatozoa using semiautomatic image analysis. J Clin Pathol. 1986 Dec;39(12):1347–1352. doi: 10.1136/jcp.39.12.1347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Katz D. F., Overstreet J. W., Samuels S. J., Niswander P. W., Bloom T. D., Lewis E. L. Morphometric analysis of spermatozoa in the assessment of human male fertility. J Androl. 1986 Jul-Aug;7(4):203–210. doi: 10.1002/j.1939-4640.1986.tb00913.x. [DOI] [PubMed] [Google Scholar]
  18. Katz D. F., Overstreet J. W. Sperm motility assessment by videomicrography. Fertil Steril. 1981 Feb;35(2):188–193. doi: 10.1016/s0015-0282(16)45320-3. [DOI] [PubMed] [Google Scholar]
  19. LEBLOND C. P., CLERMONT Y. Definition of the stages of the cycle of the seminiferous epithelium in the rat. Ann N Y Acad Sci. 1952 Nov 20;55(4):548–573. doi: 10.1111/j.1749-6632.1952.tb26576.x. [DOI] [PubMed] [Google Scholar]
  20. MacLeod J., Wang Y. Male fertility potential in terms of semen quality: a review of the past, a study of the present. Fertil Steril. 1979 Feb;31(2):103–116. doi: 10.1016/s0015-0282(16)43808-2. [DOI] [PubMed] [Google Scholar]
  21. Mathur S., Carlton M., Ziegler J., Rust P. F., Williamson H. O. A computerized sperm motion analysis [published erraturm appears in Fertil Steril 1986 Nov;46(5):980]. Fertil Steril. 1986 Sep;46(3):484–488. [PubMed] [Google Scholar]
  22. Meistrich M. L. Critical components of testicular function and sensitivity to disruption. Biol Reprod. 1986 Feb;34(1):17–28. doi: 10.1095/biolreprod34.1.17. [DOI] [PubMed] [Google Scholar]
  23. Meistrich M. L., Samuels R. C. Reduction in sperm levels after testicular irradiation of the mouse: a comparison with man. Radiat Res. 1985 Apr;102(1):138–147. [PubMed] [Google Scholar]
  24. Moore D. H., 2nd, Bennett D. E., Kranzler D., Wyrobek A. J. Quantitative methods of measuring the sensitivity of the mouse sperm morphology assay. Anal Quant Cytol. 1982 Sep;4(3):199–206. [PubMed] [Google Scholar]
  25. Okey A. B., Bondy G. P., Mason M. E., Kahl G. F., Eisen H. J., Guenthner T. M., Nebert D. W. Regulatory gene product of the Ah locus. Characterization of the cytosolic inducer-receptor complex and evidence for its nuclear translocation. J Biol Chem. 1979 Nov 25;254(22):11636–11648. [PubMed] [Google Scholar]
  26. Overstreet J. W. Laboratory tests for human male reproductive risk assessment. Teratog Carcinog Mutagen. 1984;4(1):67–82. doi: 10.1002/tcm.1770040108. [DOI] [PubMed] [Google Scholar]
  27. Rowley M. J., Leach D. R., Warner G. A., Heller C. G. Effect of graded doses of ionizing radiation on the human testis. Radiat Res. 1974 Sep;59(3):665–678. [PubMed] [Google Scholar]
  28. Ruelius H. W. Extrapolation from animals to man: predictions, pitfalls and perspectives. Xenobiotica. 1987 Mar;17(3):255–265. doi: 10.3109/00498258709043936. [DOI] [PubMed] [Google Scholar]
  29. Schulze W., Rehder U. Organization and morphogenesis of the human seminiferous epithelium. Cell Tissue Res. 1984;237(3):395–407. doi: 10.1007/BF00228424. [DOI] [PubMed] [Google Scholar]
  30. Working P. K., Hurtt M. E. Computerized videomicrographic analysis of rat sperm motility. J Androl. 1987 Sep-Oct;8(5):330–337. doi: 10.1002/j.1939-4640.1987.tb00971.x. [DOI] [PubMed] [Google Scholar]
  31. Zenick H., Blackburn K., Hope E., Oudiz D., Goeden H. Evaluating male reproductive toxicity in rodents: a new animal model. Teratog Carcinog Mutagen. 1984;4(1):109–128. doi: 10.1002/tcm.1770040110. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES