Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1988 Apr;77:109–120. doi: 10.1289/ehp.8877109

Long-term carcinogenicity study in Syrian golden hamster of particulate emissions from coal- and oil-fired power plants.

S A Persson 1, M Ahlberg 1, L Berghem 1, E Könberg 1, G F Nordberg 1, F Bergman 1
PMCID: PMC1474526  PMID: 3383816

Abstract

Male Syrian golden hamsters were given 15 weekly intratracheal instillations with suspensions of coal fly ash or oil fly ash. Controls were instilled with saline containing gelatine (0.5 g/100 mL) or to check particle effects with suspensions of hematite (Fe2O3). The common weekly dose was 4.5 mg/hamster. In addition, one subgroup of hamsters was treated with oil fly ash at a weekly dose of 3.0 mg/hamster and another with coal fly ash at a weekly dose of 6.0 mg/hamster. Other groups of hamsters were treated with suspensions of benzo[a]pyrene (BaP) or with suspensions on coal fly ash, oil fly ash, or Fe2O3 coated with BaP. The mass median aerodynamic diameters of the coal and oil fly ashes were 4.4 microns and 28 microns, respectively. Hamsters treated with oil fly ash showed a higher frequency of bronchiolar-alveolar hyperplasia than hamsters in the other treatment groups. Squamous dysplasia and squamous metaplasia were most frequent in animals treated with suspensions of BaP or BaP-coated particles. The earliest appearance of a tumor, the highest incidence of tumors, and the highest incidence of malignant tumors were observed in hamsters treated with oil fly ash coated with BaP. Squamous cell carcinoma and adenosquamous carcinoma were the most frequent malignant tumors. No malignant tumors and only few benign tumors were observed in hamsters instilled with suspensions of fly ash not coated with BaP. The present study gives no indication that coal fly ash could create more serious health problems than oil fly ash.

Full text

PDF
109

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahlberg M., Berghem L., Nordberg G., Persson S. A., Rudling L., Steen B. Chemical and biological characterization of emissions from coal- and oil-fired power plants. Environ Health Perspect. 1983 Jan;47:85–102. doi: 10.1289/ehp.834785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Henry M. C., Port C. D., Kaufman D. G. Importance of physical properties of benzo(a)pyrene-ferric oxide mixtures in lung tumor induction. Cancer Res. 1975 Jan;35(1):207–217. [PubMed] [Google Scholar]
  3. Nettesheim P., Topping D. C., Jamasbi R. Host and environmental factors enhancing carcinogenesis in the respiratory tract. Annu Rev Pharmacol Toxicol. 1981;21:133–163. doi: 10.1146/annurev.pa.21.040181.001025. [DOI] [PubMed] [Google Scholar]
  4. Pershagen G., Nordberg G., Björklund N. E. Carcinomas of the respiratory tract in hamsters given arsenic trioxide and/or benzo[a]pyrene by the pulmonary route. Environ Res. 1984 Aug;34(2):227–241. doi: 10.1016/0013-9351(84)90091-4. [DOI] [PubMed] [Google Scholar]
  5. Peto R. Editorial: Guidelines on the analysis of tumour rates and death rates in experimental animals. Br J Cancer. 1974 Feb;29(2):101–105. doi: 10.1038/bjc.1974.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Peto R., Pike M. C., Armitage P., Breslow N. E., Cox D. R., Howard S. V., Mantel N., McPherson K., Peto J., Smith P. G. Design and analysis of randomized clinical trials requiring prolonged observation of each patient. II. analysis and examples. Br J Cancer. 1977 Jan;35(1):1–39. doi: 10.1038/bjc.1977.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Peto R., Pike M. C., Day N. E., Gray R. G., Lee P. N., Parish S., Peto J., Richards S., Wahrendorf J. Guidelines for simple, sensitive significance tests for carcinogenic effects in long-term animal experiments. IARC Monogr Eval Carcinog Risk Chem Hum Suppl. 1980;(2 Suppl):311–426. [PubMed] [Google Scholar]
  8. Pott F., Stöber W. Carcinogenicity of airborne combustion products observed in subcutaneous tissue and lungs of laboratory rodents. Environ Health Perspect. 1983 Jan;47:293–303. doi: 10.1289/ehp.8347293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Pour P., Mohr U., Altoff J., Cardesa A., Kmoch N. Spontaneous tumors and common diseases in two colonies of Syrian hamsters. IV. Vascular and lymphatic systems and lesions of other sites. J Natl Cancer Inst. 1976 May;56(5):963–974. doi: 10.1093/jnci/56.5.963. [DOI] [PubMed] [Google Scholar]
  10. Pylev L. N., Roe F. J., Warwick G. P. Elimination of radioactivity after intratracheal instillation of tritiated 3,4-benzopyrene in hamsters. Br J Cancer. 1969 Mar;23(1):103–115. doi: 10.1038/bjc.1969.16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. SAFFIOTTI U., KOLB L. H., SHUBIK P. EXPERIMENTAL STUDIES OF THE CONDITIONS OF EXPOSURE TO CARCINOGENS FOR LUNG CANCER INDUCTION. J Air Pollut Control Assoc. 1965 Jan;15:23–25. doi: 10.1080/00022470.1965.10468328. [DOI] [PubMed] [Google Scholar]
  12. Saffiotti U., Cefis F., Kolb L. H. A method for the experimental induction of bronchogenic carcinoma. Cancer Res. 1968 Jan;28(1):104–124. [PubMed] [Google Scholar]
  13. Saffiotti U., Montesano R., Sellakumar A. R., Cefis F., Kaufman D. G. Respiratory tract carcinogenesis in hamsters induced by different numbers of administrations of benzo(a)pyrene and ferric oxide. Cancer Res. 1972 May;32(5):1073–1081. [PubMed] [Google Scholar]
  14. Schiff L. J., Graham J. A. Cytotoxic effect of vanadium and oil-fired fly ash on hamster tracheal epithelium. Environ Res. 1984 Aug;34(2):390–402. doi: 10.1016/0013-9351(84)90105-1. [DOI] [PubMed] [Google Scholar]
  15. Schiff L. J., Graham J. A. Pathologic changes induced by coal-fired fly ash in hamster tracheal grafts. Toxicology. 1984 Feb;29(4):307–313. doi: 10.1016/0300-483x(84)90162-8. [DOI] [PubMed] [Google Scholar]
  16. Schum M., Yeh H. C. Theoretical evaluation of aerosol deposition in anatomical models of mammalian lung airways. Bull Math Biol. 1980;42(1):1–15. doi: 10.1007/BF02462363. [DOI] [PubMed] [Google Scholar]
  17. Stenbäck F. Morphology of experimentally induced respiratory tumors in syrian golden hamster. A histological, histochemical and ultrastructural study. Acta Otolaryngol Suppl. 1977;347:1–59. [PubMed] [Google Scholar]
  18. Sun J. D., Wolff R. K., Kanapilly G. M. Deposition, retention, and biological fate of inhaled benzo(a)pyrene adsorbed onto ultrafine particles and as a pure aerosol. Toxicol Appl Pharmacol. 1982 Sep 15;65(2):231–244. doi: 10.1016/0041-008x(82)90005-9. [DOI] [PubMed] [Google Scholar]
  19. Sun J. D., Wolff R. K., Kanapilly G. M., McClellan R. O. Lung retention and metabolic fate of inhaled benzo(a)pyrene associated with diesel exhaust particles. Toxicol Appl Pharmacol. 1984 Mar 30;73(1):48–59. doi: 10.1016/0041-008x(84)90052-8. [DOI] [PubMed] [Google Scholar]
  20. Svartengren M., Falk R., Linnman L., Philipson K., Camner P. Deposition of large particles in human lung. Exp Lung Res. 1987;12(1):75–88. doi: 10.3109/01902148709068815. [DOI] [PubMed] [Google Scholar]
  21. Wei C. I., Culbertson M. R., Shifrine M., Rosenblatt L. S., Chrisp C. E. Comparative studies on in vivo carcinogenesis in rats and in vitro mutagenesis of mutagenic coal fly ash. J Toxicol Environ Health. 1982 Oct-Nov;10(4-5):587–600. doi: 10.1080/15287398209530278. [DOI] [PubMed] [Google Scholar]
  22. Yeh H. C., Schum G. M. Models of human lung airways and their application to inhaled particle deposition. Bull Math Biol. 1980;42(3):461–480. doi: 10.1007/BF02460796. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES