Abstract
Extrapolation of pharmacokinetic data between species has been simplified by the advent of more sensitive methods of analysis of chemicals in body tissues and by the capability of inexpensive computers to perform complex calculations. These new methods enable investigators to observe the rates at which target tissues reach equilibrium in different species and to develop mathematical models of these processes. The evaluation of physiological pharmacokinetics from classical or compartmental kinetics is improving the ability to project the long-term behavior of chemicals in body fluids and organs based on independently derived physical, chemical, and physiological constants obtained from simple chemical reactions, tissue culture experiments, or short-term animal studies. Accurate prediction of chemical behavior by such models gives support to hypothetical mechanisms of distribution and accumulation, while significant deviations from predicted behavior signal the existence of previously unsuspected pathways. These techniques permit the simulation of the impact of linear, nonlinear, and saturation kinetics on chemical behavior; the prediction of integrated tissue exposure; and the mapping of the sequence of alternate metabolic pathways that lead to toxicity or detoxification. The discussion will identify the research needs for improving extrapolations between species.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albro P. W., Corbett J. T., Schroeder J. L., Jordan S., Matthews H. B. Pharmacokinetics, interactions with macromolecules and species differences in metabolism of DEHP. Environ Health Perspect. 1982 Nov;45:19–25. doi: 10.1289/ehp.824519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andersen M. E. Saturable metabolism and its relationship to toxicity. Crit Rev Toxicol. 1981 May;9(2):105–150. doi: 10.3109/10408448109059563. [DOI] [PubMed] [Google Scholar]
- Atkinson A. J., Jr, Kushner W. Clinical pharmacokinetics. Annu Rev Pharmacol Toxicol. 1979;19:105–127. doi: 10.1146/annurev.pa.19.040179.000541. [DOI] [PubMed] [Google Scholar]
- Boxenbaum H. Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinetics. J Pharmacokinet Biopharm. 1982 Apr;10(2):201–227. doi: 10.1007/BF01062336. [DOI] [PubMed] [Google Scholar]
- Boxenbaum H. Interspecies variation in liver weight, hepatic blood flow, and antipyrine intrinsic clearance: extrapolation of data to benzodiazepines and phenytoin. J Pharmacokinet Biopharm. 1980 Apr;8(2):165–176. doi: 10.1007/BF01065191. [DOI] [PubMed] [Google Scholar]
- Chen H. S., Gross J. F. Physiologically based pharmacokinetic models for anticancer drugs. Cancer Chemother Pharmacol. 1979;2(2):85–94. doi: 10.1007/BF00254079. [DOI] [PubMed] [Google Scholar]
- Chen H. S., Gross J. F. Physiologically based pharmacokinetic models for anticancer drugs. Cancer Chemother Pharmacol. 1979;2(2):85–94. doi: 10.1007/BF00254079. [DOI] [PubMed] [Google Scholar]
- Chivers D. J., Hladik C. M. Morphology of the gastrointestinal tract in primates: comparisons with other mammals in relation to diet. J Morphol. 1980 Dec;166(3):337–386. doi: 10.1002/jmor.1051660306. [DOI] [PubMed] [Google Scholar]
- Clark B., Smith D. A. Pharmacokinetics and toxicity testing. Crit Rev Toxicol. 1984;12(4):343–385. doi: 10.3109/10408448409044214. [DOI] [PubMed] [Google Scholar]
- Dedrick R. L. Animal scale-up. J Pharmacokinet Biopharm. 1973 Oct;1(5):435–461. doi: 10.1007/BF01059667. [DOI] [PubMed] [Google Scholar]
- Dedrick R. L., Forrester D. D., Cannon J. N., el-Dareer S. M., Mellett L. B. Pharmacokinetics of 1-beta-D-arabinofuranosylcytosine (ARA-C) deamination in several species. Biochem Pharmacol. 1973 Oct 1;22(19):2405–2417. doi: 10.1016/0006-2952(73)90342-0. [DOI] [PubMed] [Google Scholar]
- Dedrick R. L., Forrester D. D., Ho D. H. In vitro-in vivo correlation of drug metabolism--deamination of 1- -D-arabinofuranosylcytosine. Biochem Pharmacol. 1972 Jan;21(1):1–16. doi: 10.1016/0006-2952(72)90245-6. [DOI] [PubMed] [Google Scholar]
- Dietz F. K., Ramsey J. C., Watanabe P. G. Relevance of experimental studies to human risk. Environ Health Perspect. 1983 Oct;52:9–14. doi: 10.1289/ehp.83529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duthu G. S. Interspecies correlation of the pharmacokinetics of erythromycin, oleandomycin, and tylosin. J Pharm Sci. 1985 Sep;74(9):943–946. doi: 10.1002/jps.2600740907. [DOI] [PubMed] [Google Scholar]
- Harrison L. I., Gibaldi M. Physiologically based pharmacokinetic model for digoxin distribution and elimination in the rat. J Pharm Sci. 1977 Aug;66(8):1138–1142. doi: 10.1002/jps.2600660822. [DOI] [PubMed] [Google Scholar]
- Hiles R. A., Birch C. G. Nonlinear metabolism and disposition of 3,4,4'-trichlorocarbanilide in the rat. Toxicol Appl Pharmacol. 1978 Nov;46(2):323–337. doi: 10.1016/0041-008x(78)90078-9. [DOI] [PubMed] [Google Scholar]
- Hoel D. G., Kaplan N. L., Anderson M. W. Implication of nonlinear kinetics on risk estimation in carcinogenesis. Science. 1983 Mar 4;219(4588):1032–1037. doi: 10.1126/science.6823565. [DOI] [PubMed] [Google Scholar]
- Igari Y., Sugiyama Y., Sawada Y., Iga T., Hanano M. Prediction of diazepam disposition in the rat and man by a physiologically based pharmacokinetic model. J Pharmacokinet Biopharm. 1983 Dec;11(6):577–593. doi: 10.1007/BF01059058. [DOI] [PubMed] [Google Scholar]
- Keller W. C., Yeary R. A. A comparison of the effects of mineral oil, vegetable oil, and sodium sulfate on the intestinal absorption of DDT in rodents. Clin Toxicol. 1980 Apr;16(2):223–231. doi: 10.3109/15563658008989941. [DOI] [PubMed] [Google Scholar]
- Krewski D., Brown C., Murdoch D. Determining "safe" levels of exposure: safety factors or mathematical models? Fundam Appl Toxicol. 1984 Jun;4(3 Pt 2):S383–S394. doi: 10.1016/0272-0590(84)90267-7. [DOI] [PubMed] [Google Scholar]
- Mordenti J. Pharmacokinetic scale-up: accurate prediction of human pharmacokinetic profiles from animal data. J Pharm Sci. 1985 Oct;74(10):1097–1099. doi: 10.1002/jps.2600741017. [DOI] [PubMed] [Google Scholar]
- Prescott L. F. Gastrointestinal absorption of drugs. Med Clin North Am. 1974 Sep;58(5):907–916. doi: 10.1016/s0025-7125(16)32088-0. [DOI] [PubMed] [Google Scholar]
- SPENCER R. P. VARIATION OF INTESTINAL ACTIVITY WITH AGE: A REVIEW. Yale J Biol Med. 1964 Oct;37:105–129. [PMC free article] [PubMed] [Google Scholar]
- Sawada Y., Hanano M., Sugiyama Y., Harashima H., Iga T. Prediction of the volumes of distribution of basic drugs in humans based on data from animals. J Pharmacokinet Biopharm. 1984 Dec;12(6):587–596. doi: 10.1007/BF01059554. [DOI] [PubMed] [Google Scholar]
- Sawada Y., Hanano M., Sugiyama Y., Iga T. Prediction of the disposition of beta-lactam antibiotics in humans from pharmacokinetic parameters in animals. J Pharmacokinet Biopharm. 1984 Jun;12(3):241–261. doi: 10.1007/BF01061720. [DOI] [PubMed] [Google Scholar]
- Smyth R. D., Hottendorf G. H. Application of pharmacokinetics and biopharmaceutics in the design of toxicological studies. Toxicol Appl Pharmacol. 1980 Apr;53(2):179–195. doi: 10.1016/0041-008x(80)90418-4. [DOI] [PubMed] [Google Scholar]
- Tozer T. N. Concepts basic to pharmacokinetics. Pharmacol Ther. 1981;12(1):109–131. doi: 10.1016/0163-7258(81)90077-2. [DOI] [PubMed] [Google Scholar]
- Tsuji A., Nishide K., Minami H., Nakashima E., Terasaki T., Yamana T. Physiologically based pharmacokinetic model for cefazolin in rabbits and its preliminary extrapolation to man. Drug Metab Dispos. 1985 Nov-Dec;13(6):729–739. [PubMed] [Google Scholar]
- Tuey D. B., Matthews H. B. Distribution and excretion of 2,2',4,4',5,5'-hexabromobiphenyl in rats and man: pharmacokinetic model predictions. Toxicol Appl Pharmacol. 1980 May;53(3):420–431. doi: 10.1016/0041-008x(80)90355-5. [DOI] [PubMed] [Google Scholar]
- Weiss M., Sziegoleit W., Förster W. Dependence of pharmacokinetic parameters on the body weight. Int J Clin Pharmacol Biopharm. 1977 Dec;15(12):572–575. [PubMed] [Google Scholar]
