Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1987 Aug;73:179–189. doi: 10.1289/ehp.8773179

Lipid peroxidation and antioxidative protection mechanism in rat lungs upon acute and chronic exposure to nitrogen dioxide.

M Sagai 1, T Ichinose 1
PMCID: PMC1474557  PMID: 3665862

Abstract

This work was done to clarify the relation between the changes of lipid peroxidation and the activities of antioxidative protective enzymes in lungs of rats exposed acutely, subacutely, and chronically to nitrogen dioxide. It was confirmed that the activities of the antioxidative enzymes to protect cells from oxidative stress increased in an early phase, and then the activities decreased gradually. Lipid peroxides increased once in an early phase and then returned to the control level; thereafter, lipid peroxides increased gradually again. Lipid peroxidation as measured by ethane exhalation increased significantly with 0.04, 0.4, and 4 ppm nitrogen dioxide exposure for 9, 18, and 27 months, and a dose-response relationship was clearly observed. The temporal changes of lipid peroxidation varied inversely with that of the activities of antioxidative protective enzymes. From these results, it was suggested that the increments of antioxidative protective enzyme activities in an early phase were complementary effects to protect cells from damage by lipid peroxides which were increased by nitrogen dioxide exposure, and that the complementary effects are lost in later phases of life-span exposure. Finally, loss of such protective complementary effects might relate to some chronic diseases in lungs. Therefore, the temporal changes described above are important characteristics in chronic exposure of air pollutants.

Full text

PDF
179

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arakawa K., Sagai M. Species differences in lipid peroxide levels in lung tissue and investigation of their determining factors. Lipids. 1986 Dec;21(12):769–775. doi: 10.1007/BF02535410. [DOI] [PubMed] [Google Scholar]
  2. Ayaz K. L., Csallany A. S. Long-term NO2 exposure of mice in the presence and absence of vitamin E. II. Effect of glutathione peroxidase. Arch Environ Health. 1978 Nov-Dec;33(6):292–296. doi: 10.1080/00039896.1978.10667350. [DOI] [PubMed] [Google Scholar]
  3. Chow C. K., Tappel A. L. An enzymatic protective mechanism against lipid peroxidation damage to lungs of ozone-exposed rats. Lipids. 1972 Aug;7(8):518–524. doi: 10.1007/BF02533017. [DOI] [PubMed] [Google Scholar]
  4. Christophersen B. O. Formation of monohydroxy-polyenic fatty acids from lipid peroxides by a glutathione peroxidase. Biochim Biophys Acta. 1968 Sep 2;164(1):35–46. doi: 10.1016/0005-2760(68)90068-4. [DOI] [PubMed] [Google Scholar]
  5. Christophersen B. O. Reduction of linolenic acid hydroperoxide by a glutathione peroxidase. Biochim Biophys Acta. 1969 Apr 29;176(3):463–470. doi: 10.1016/0005-2760(69)90213-6. [DOI] [PubMed] [Google Scholar]
  6. Davidson J. T., Lillington G. A., Haydon G. B., Wasserman K. Physiologic changes in the lungs of rabbits continuously exposed to nitrogen dioxide. Am Rev Respir Dis. 1967 May;95(5):790–796. doi: 10.1164/arrd.1967.95.5.790. [DOI] [PubMed] [Google Scholar]
  7. DeLucia A. J., Mustafa M. G., Hussain M. Z., Cross C. E. Ozone interaction with rodent lung. III. Oxidation of reduced glutathione and formation of mixed disulfides between protein and nonprotein sulfhydryls. J Clin Invest. 1975 Apr;55(4):794–802. doi: 10.1172/JCI107990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dillard C. J., Sagai M., Tappel A. L. Respiratory pentane: a measure of in vivo lipid peroxidation applied to rats fed diets varying in polyunsaturated fats, vitamin E, and selenium and exposed to nitrogen dioxide. Toxicol Lett. 1980 Sep;6(4-5):251–256. doi: 10.1016/0378-4274(80)90128-9. [DOI] [PubMed] [Google Scholar]
  9. Evans M. J., Cabral L. J., Stephens R. J., Freeman G. Renewal of alveolar epithelium in the rat following exposure to NO2. Am J Pathol. 1973 Feb;70(2):175–198. [PMC free article] [PubMed] [Google Scholar]
  10. Evans M. J., Cabral L. J., Stephens R. J., Freeman G. Transformation of alveolar type 2 cells to type 1 cells following exposure to NO2. Exp Mol Pathol. 1975 Feb;22(1):142–150. doi: 10.1016/0014-4800(75)90059-3. [DOI] [PubMed] [Google Scholar]
  11. Evans M. J., Stephens R. J., Cabral L. J., Freeman G. Cell renewal in the lungs of rats exposed to low levels of NO2. Arch Environ Health. 1972 Mar;24(3):180–188. doi: 10.1080/00039896.1972.10666067. [DOI] [PubMed] [Google Scholar]
  12. FAIRCHILD E. J., 2nd, MURPHY S. D., STOKINGER H. E. Protection by sulfur compounds against the air pollutants ozone and nitrogen dioxide. Science. 1959 Oct 2;130(3379):861–862. doi: 10.1126/science.130.3379.861. [DOI] [PubMed] [Google Scholar]
  13. Fletcher B. L., Tappel A. L. Protective effects of dietary -tocopherol in rats exposed to toxic levels of ozone and nitrogen dioxide. Environ Res. 1973 Jun;6(2):165–175. doi: 10.1016/0013-9351(73)90030-3. [DOI] [PubMed] [Google Scholar]
  14. Freeman G., Crane S. C., Furiosi N. J., Stephens R. J., Evans M. J., Moore W. D. Covert reduction in ventilatory surface in rats during prolonged exposure to subacute nitrogen dioxide. Am Rev Respir Dis. 1972 Oct;106(4):563–579. doi: 10.1164/arrd.1972.106.4.563. [DOI] [PubMed] [Google Scholar]
  15. Habig W. H., Pabst M. J., Jakoby W. B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974 Nov 25;249(22):7130–7139. [PubMed] [Google Scholar]
  16. Leung H. W., Morrow P. E. Interaction of glutathione and ascorbic acid in guinea pig lungs exposed to nitrogen dioxide. Res Commun Chem Pathol Pharmacol. 1981 Jan;31(1):111–118. [PubMed] [Google Scholar]
  17. Little C., O'Brien P. J. An intracellular GSH-peroxidase with a lipid peroxide substrate. Biochem Biophys Res Commun. 1968 Apr 19;31(2):145–150. doi: 10.1016/0006-291x(68)90721-3. [DOI] [PubMed] [Google Scholar]
  18. McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
  19. McCray P. B., Gibson D. D., Fong K. L., Hornbrook K. R. Effect of glutathione peroxidase activity on lipid peroxidation in biological membranes. Biochim Biophys Acta. 1976 Jun 22;431(3):459–468. [PubMed] [Google Scholar]
  20. Menzel D. B., Roehm J. N., Lee S. D. Vitamin E: the biological and environmental antioxidant. J Agric Food Chem. 1972 May-Jun;20(3):481–486. doi: 10.1021/jf60181a039. [DOI] [PubMed] [Google Scholar]
  21. Menzel D. B. Toxicity of ozone, oxygen, and radiation. Annu Rev Pharmacol. 1970;10:379–394. doi: 10.1146/annurev.pa.10.040170.002115. [DOI] [PubMed] [Google Scholar]
  22. Mustafa M. G., Tierney D. F. Biochemical and metabolic changes in the lung with oxygen, ozone, and nitrogen dioxide toxicity. Am Rev Respir Dis. 1978 Dec;118(6):1061–1090. doi: 10.1164/arrd.1978.118.6.1061. [DOI] [PubMed] [Google Scholar]
  23. Niki E., Saito T., Kawakami A., Kamiya Y. Inhibition of oxidation of methyl linoleate in solution by vitamin E and vitamin C. J Biol Chem. 1984 Apr 10;259(7):4177–4182. [PubMed] [Google Scholar]
  24. Packer J. E., Slater T. F., Willson R. L. Direct observation of a free radical interaction between vitamin E and vitamin C. Nature. 1979 Apr 19;278(5706):737–738. doi: 10.1038/278737a0. [DOI] [PubMed] [Google Scholar]
  25. Prohaska J. R. The glutathione peroxidase activity of glutathione S-transferases. Biochim Biophys Acta. 1980 Jan 11;611(1):87–98. doi: 10.1016/0005-2744(80)90045-5. [DOI] [PubMed] [Google Scholar]
  26. Roehm J. N., Hadley J. G., Menzel D. B. Antioxidants vs lung disease. Arch Intern Med. 1971 Jul;128(1):88–93. [PubMed] [Google Scholar]
  27. Roehm J. N., Hadley J. G., Menzel D. B. Oxidation of unsaturated fatty acids by ozone and nitrogen dioxide. A common mechanism of action. Arch Environ Health. 1971 Aug;23(2):142–148. doi: 10.1080/00039896.1971.10665972. [DOI] [PubMed] [Google Scholar]
  28. Rowlands J. R., Gause E. M. Reaction of nitrogen dioxide with blood and lung components. Electron spin resonance studies. Arch Intern Med. 1971 Jul;128(1):94–100. [PubMed] [Google Scholar]
  29. Sagai M., Ichinose T., Kubota K. Studies on the biochemical effects of nitrogen dioxide. IV. Relation between the change of lipid peroxidation and the antioxidative protective system in rat lungs upon life span exposure to low levels of NO2. Toxicol Appl Pharmacol. 1984 May;73(3):444–456. doi: 10.1016/0041-008x(84)90097-8. [DOI] [PubMed] [Google Scholar]
  30. Sagai M., Ichinose T., Oda H., Kubota K. Studies on biochemical effects of nitrogen dioxide. II. Changes of the protective systems in rat lungs and of lipid peroxidation by acute exposure. J Toxicol Environ Health. 1982 Jan;9(1):153–164. doi: 10.1080/15287398209530150. [DOI] [PubMed] [Google Scholar]
  31. Sagai M., Ichinose T., Oda H., Kubota K. Studies on biochemical effects of nitrogen dioxide: I. Lipid peroxidation as measured by ethane exhalation of rats exposed to nitrogen dioxide. Lipids. 1981 Jan;16(1):64–67. doi: 10.1007/BF02534923. [DOI] [PubMed] [Google Scholar]
  32. Schuler R. H. Oxidation of ascorbate anion by electron transfer to phenoxyl radicals. Radiat Res. 1977 Mar;69(3):417–433. [PubMed] [Google Scholar]
  33. Selgrade M. K., Mole M. L., Miller F. J., Hatch G. E., Gardner D. E., Hu P. C. Effect of NO2 inhalation and vitamin C deficiency on protein and lipid accumulation in the lung. Environ Res. 1981 Dec;26(2):422–437. doi: 10.1016/0013-9351(81)90218-8. [DOI] [PubMed] [Google Scholar]
  34. Sevanian A., Elsayed N., Hacker A. D. Effects of vitamin E deficiency and nitrogen dioxide exposure on lung lipid peroxidation: use of lipid epoxides and malonaldehyde as measures of peroxidation. J Toxicol Environ Health. 1982 Oct-Nov;10(4-5):743–756. doi: 10.1080/15287398209530292. [DOI] [PubMed] [Google Scholar]
  35. Sevanian A., Hacker A. D., Elsayed N. Influence of vitamin E and nitrogen dioxide on lipid peroxidation in rat lung and liver microsomes. Lipids. 1982 Apr;17(4):269–277. doi: 10.1007/BF02534941. [DOI] [PubMed] [Google Scholar]
  36. Sevanian A., Mead J. F., Stein R. A. Epoxides as products of lipid autoxidation in rat lungs. Lipids. 1979 Jul;14(7):634–643. doi: 10.1007/BF02533449. [DOI] [PubMed] [Google Scholar]
  37. Sevanian A., Muakkassah-Kelly S. F., Montestruque S. The influence of phospholipase A2 and glutathione peroxidase on the elimination of membrane lipid peroxides. Arch Biochem Biophys. 1983 Jun;223(2):441–452. doi: 10.1016/0003-9861(83)90608-2. [DOI] [PubMed] [Google Scholar]
  38. Slade R., Stead A. G., Graham J. A., Hatch G. E. Comparison of lung antioxidant levels in humans and laboratory animals. Am Rev Respir Dis. 1985 May;131(5):742–746. doi: 10.1164/arrd.1985.131.5.742. [DOI] [PubMed] [Google Scholar]
  39. Suzuki A. K., Tsubone H., Sagai M., Kubota K. [Effects of low concentrations of and long-term exposures to nitrogen dioxide on rat arterial blood pHa, PaCO2 and PaO2]. Nihon Eiseigaku Zasshi. 1983 Oct;38(4):758–763. [PubMed] [Google Scholar]
  40. Thomas H. V., Mueller P. K., Lyman R. L. Lipoperoxidation of lung lipids in rats exposed to nitrogen dioxide. Science. 1968 Feb 2;159(3814):532–534. doi: 10.1126/science.159.3814.532. [DOI] [PubMed] [Google Scholar]
  41. Tietze F. Disulfide reduction in rat liver. I. Evidence for the presence of nonspecific nucleotide-dependent disulfide reductase and GSH-disulfide transhydrogenase activities in the high-speed supernatant fraction. Arch Biochem Biophys. 1970 May;138(1):177–188. doi: 10.1016/0003-9861(70)90297-3. [DOI] [PubMed] [Google Scholar]
  42. Yagi K., Matsuoka S., Ohkawa H., Ohishi N., Takeuchi Y. K., Sakai H. Lipoperoxide level of the retina of chick embryo exposed to high concentration of oxygen. Clin Chim Acta. 1977 Oct 15;80(2):355–360. doi: 10.1016/0009-8981(77)90044-4. [DOI] [PubMed] [Google Scholar]
  43. Yoshikawa T., Furukawa Y., Wakamatsu Y., Takemura S., Tanaka H., Kondo M. Experimental hypoxia and lipid peroxide in rats. Biochem Med. 1982 Apr;27(2):207–213. doi: 10.1016/0006-2944(82)90023-0. [DOI] [PubMed] [Google Scholar]
  44. Yoshikawa T., Furukawa Y., Wakamatsu Y., Tanaka H., Takemura S., Kondo M. The increase of thiobarbituric acid reacting substances in rats with experimental chronic hypoxia. Experientia. 1982 Mar 15;38(3):312–313. doi: 10.1007/BF01949361. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES