Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1988 Jun;78:175–177. doi: 10.1289/ehp.8878175

Oncogene activation in spontaneous and chemically induced rodent tumors: implications for risk analysis.

S H Reynolds 1, S J Stowers 1, R M Patterson 1, R R Maronpot 1, M W Anderson 1
PMCID: PMC1474622  PMID: 3203636

Abstract

The validity of rodent tumor end points in assessing the potential hazards of chemical exposure to humans is a somewhat controversial but very important issue since most chemicals are classified as potentially hazardous to humans on the basis of long-term carcinogenesis studies in rodents. The ability to distinguish between genotoxic, cytotoxic, or receptor-mediated promotion effects of chemical treatment would aid in the interpretation of rodent carcinogenesis data. Activated oncogenes in spontaneously occurring and chemically induced rodent tumors were examined and compared as one approach to determine the mechanism by which chemical treatment caused an increased incidence of rodent tumors. Different patterns of activated oncogenes were found not only in spontaneous versus chemically induced mouse liver tumors but also in a variety of spontaneous rat tumors versus chemically induced rat lung tumors. In the absence of cytotoxic effects, it could be argued that the chemicals in question activated protooncogenes by a direct genotoxic mechanism. These results provided a basis for the analysis of activated oncogenes in spontaneous and chemically induced rodent tumors to provide information at a molecular level to aid in the extrapolation of rodent carcinogenesis data to human risk assessment.

Full text

PDF
175

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bishop J. M. Viral oncogenes. Cell. 1985 Aug;42(1):23–38. doi: 10.1016/s0092-8674(85)80098-2. [DOI] [PubMed] [Google Scholar]
  2. Bizub D., Wood A. W., Skalka A. M. Mutagenesis of the Ha-ras oncogene in mouse skin tumors induced by polycyclic aromatic hydrocarbons. Proc Natl Acad Sci U S A. 1986 Aug;83(16):6048–6052. doi: 10.1073/pnas.83.16.6048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fox T. R., Watanabe P. G. Detection of a cellular oncogene in spontaneous liver tumors of B6C3F1 mice. Science. 1985 May 3;228(4699):596–597. doi: 10.1126/science.3983645. [DOI] [PubMed] [Google Scholar]
  4. Land H., Parada L. F., Weinberg R. A. Cellular oncogenes and multistep carcinogenesis. Science. 1983 Nov 18;222(4625):771–778. doi: 10.1126/science.6356358. [DOI] [PubMed] [Google Scholar]
  5. Reynolds S. H., Stowers S. J., Maronpot R. R., Anderson M. W., Aaronson S. A. Detection and identification of activated oncogenes in spontaneously occurring benign and malignant hepatocellular tumors of the B6C3F1 mouse. Proc Natl Acad Sci U S A. 1986 Jan;83(1):33–37. doi: 10.1073/pnas.83.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Reynolds S. H., Stowers S. J., Patterson R. M., Maronpot R. R., Aaronson S. A., Anderson M. W. Activated oncogenes in B6C3F1 mouse liver tumors: implications for risk assessment. Science. 1987 Sep 11;237(4820):1309–1316. doi: 10.1126/science.3629242. [DOI] [PubMed] [Google Scholar]
  7. Stowers S. J., Glover P. L., Reynolds S. H., Boone L. R., Maronpot R. R., Anderson M. W. Activation of the K-ras protooncogene in lung tumors from rats and mice chronically exposed to tetranitromethane. Cancer Res. 1987 Jun 15;47(12):3212–3219. [PubMed] [Google Scholar]
  8. Varmus H. E. The molecular genetics of cellular oncogenes. Annu Rev Genet. 1984;18:553–612. doi: 10.1146/annurev.ge.18.120184.003005. [DOI] [PubMed] [Google Scholar]
  9. Zarbl H., Sukumar S., Arthur A. V., Martin-Zanca D., Barbacid M. Direct mutagenesis of Ha-ras-1 oncogenes by N-nitroso-N-methylurea during initiation of mammary carcinogenesis in rats. 1985 May 30-Jun 5Nature. 315(6018):382–385. doi: 10.1038/315382a0. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES