Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Apr 1;26(7):1567–1575. doi: 10.1093/nar/26.7.1567

Selecting optimal oligonucleotide composition for maximal antisense effect following streptolysin O-mediated delivery into human leukaemia cells.

R V Giles 1, D G Spiller 1, J Grzybowski 1, R E Clark 1, P Nicklin 1, D M Tidd 1
PMCID: PMC147466  PMID: 9512525

Abstract

It is widely accepted that most cell types efficiently exclude oligonucleotides in vitro and require specific delivery systems, such as cationic lipids, to enhance uptake and subsequent antisense effects. Oligonucleotides are not readily transfected into leukaemia cell lines using cationic lipid systems and streptolysin O (SLO) is used to effect their delivery. We wished to investigate the optimal oligonucleotide composition for antisense efficacy and specificity following delivery into leukaemia cells using SLO. For this study the well characterised chronic myeloid leukaemia cell line KYO-1 was selected and oligonucleotides (20mers) were targeted to an empirically identified accessible site of c- myc mRNA. The efficiency and specificity of antisense effect was measured 4 and 24 h after SLO-mediated delivery of the oligonucleotides. C5-propyne phosphodiester and phosphorothioate compounds were found to present substantial non-specific effects at 20 microM but were inactive at 0.2 microM. Indeed, no antisense-specific effect was noted at any concentration at either time. All of the other oligonucleotides tested induced some measurable antisense effect, except 7 (chimeric, all-phosphorothioate, 2'-methoxyethoxy termini) which was essentially inactive at 20 microM. The rank efficiency order of the remaining antisense compounds was 4 = 3 >> 9 >> 10 = 8 = 5 = 6 > 11. The efficient antisense effects induced by the chimeric methylphosphonate-phosphodiester compounds were found to be highly specific. Increased phosphorothioate content in the oligonucleotide backbone correlated with reduced antisense activity (efficacy: 2'-methoxyethoxy series 9 >> 8 >> 7, 2'-methoxytriethoxy series 10 > 11). No consistent evidence was obtained for increased activity correlating with increased oligonucleotide-mRNA heteroduplex thermal stability. In conclusion, the chimeric methylphosphonate-phosphodiester oligodeoxynucleotides present the most favourable characteristics of the compounds tested, for efficient and specific antisense suppression of gene expression following SLO-mediated delivery.

Full Text

The Full Text of this article is available as a PDF (167.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Afar D. E., Goga A., McLaughlin J., Witte O. N., Sawyers C. L. Differential complementation of Bcr-Abl point mutants with c-Myc. Science. 1994 Apr 15;264(5157):424–426. doi: 10.1126/science.8153630. [DOI] [PubMed] [Google Scholar]
  2. Altmann K. H., Fabbro D., Dean N. M., Geiger T., Monia B. P., Müller M., Nicklin P. Second-generation antisense oligonucleotides: structure-activity relationships and the design of improved signal-transduction inhibitors. Biochem Soc Trans. 1996 Aug;24(3):630–637. doi: 10.1042/bst0240630. [DOI] [PubMed] [Google Scholar]
  3. Baker B. F., Lot S. S., Condon T. P., Cheng-Flournoy S., Lesnik E. A., Sasmor H. M., Bennett C. F. 2'-O-(2-Methoxy)ethyl-modified anti-intercellular adhesion molecule 1 (ICAM-1) oligonucleotides selectively increase the ICAM-1 mRNA level and inhibit formation of the ICAM-1 translation initiation complex in human umbilical vein endothelial cells. J Biol Chem. 1997 May 2;272(18):11994–12000. doi: 10.1074/jbc.272.18.11994. [DOI] [PubMed] [Google Scholar]
  4. Barry E. L., Gesek F. A., Friedman P. A. Introduction of antisense oligonucleotides into cells by permeabilization with streptolysin O. Biotechniques. 1993 Dec;15(6):1016-8, 1020. [PubMed] [Google Scholar]
  5. Beimling P., Benter T., Sander T., Moelling K. Isolation and characterization of the human cellular myc gene product. Biochemistry. 1985 Nov 5;24(23):6349–6355. doi: 10.1021/bi00344a005. [DOI] [PubMed] [Google Scholar]
  6. Bennett C. F., Chiang M. Y., Chan H., Shoemaker J. E., Mirabelli C. K. Cationic lipids enhance cellular uptake and activity of phosphorothioate antisense oligonucleotides. Mol Pharmacol. 1992 Jun;41(6):1023–1033. [PubMed] [Google Scholar]
  7. Bergan R., Connell Y., Fahmy B., Neckers L. Electroporation enhances c-myc antisense oligodeoxynucleotide efficacy. Nucleic Acids Res. 1993 Jul 25;21(15):3567–3573. doi: 10.1093/nar/21.15.3567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Boussif O., Lezoualc'h F., Zanta M. A., Mergny M. D., Scherman D., Demeneix B., Behr J. P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7297–7301. doi: 10.1073/pnas.92.16.7297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Boutorine A. S., Kostina E. V. Reversible covalent attachment of cholesterol to oligodeoxyribonucleotides for studies of the mechanisms of their penetration into eucaryotic cells. Biochimie. 1993;75(1-2):35–41. doi: 10.1016/0300-9084(93)90022-k. [DOI] [PubMed] [Google Scholar]
  10. Broughton C. M., Spiller D. G., Pender N., Komorovskaya M., Grzybowski J., Giles R. V., Tidd D. M., Clark R. E. Preclinical studies of streptolysin-O in enhancing antisense oligonucleotide uptake in harvests from chronic myeloid leukaemia patients. Leukemia. 1997 Sep;11(9):1435–1441. doi: 10.1038/sj.leu.2400774. [DOI] [PubMed] [Google Scholar]
  11. Chavany C., Le Doan T., Couvreur P., Puisieux F., Hélène C. Polyalkylcyanoacrylate nanoparticles as polymeric carriers for antisense oligonucleotides. Pharm Res. 1992 Apr;9(4):441–449. doi: 10.1023/a:1015871809313. [DOI] [PubMed] [Google Scholar]
  12. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  13. Clarenc J. P., Degols G., Leonetti J. P., Milhaud P., Lebleu B. Delivery of antisense oligonucleotides by poly(L-lysine) conjugation and liposome encapsulation. Anticancer Drug Des. 1993 Feb;8(1):81–94. [PubMed] [Google Scholar]
  14. Crooke S. T., Lemonidis K. M., Neilson L., Griffey R., Lesnik E. A., Monia B. P. Kinetic characteristics of Escherichia coli RNase H1: cleavage of various antisense oligonucleotide-RNA duplexes. Biochem J. 1995 Dec 1;312(Pt 2):599–608. doi: 10.1042/bj3120599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Cummins L. L., Owens S. R., Risen L. M., Lesnik E. A., Freier S. M., McGee D., Guinosso C. J., Cook P. D. Characterization of fully 2'-modified oligoribonucleotide hetero- and homoduplex hybridization and nuclease sensitivity. Nucleic Acids Res. 1995 Jun 11;23(11):2019–2024. doi: 10.1093/nar/23.11.2019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dhut S., Chaplin T., Young B. D. BCR-ABL and BCR proteins: biochemical characterization and localization. Leukemia. 1990 Nov;4(11):745–750. [PubMed] [Google Scholar]
  17. Fialkow P. J., Jacobson R. J., Papayannopoulou T. Chronic myelocytic leukemia: clonal origin in a stem cell common to the granulocyte, erythrocyte, platelet and monocyte/macrophage. Am J Med. 1977 Jul;63(1):125–130. doi: 10.1016/0002-9343(77)90124-3. [DOI] [PubMed] [Google Scholar]
  18. Giles R. V., Ruddell C. J., Spiller D. G., Green J. A., Tidd D. M. Single base discrimination for ribonuclease H-dependent antisense effects within intact human leukaemia cells. Nucleic Acids Res. 1995 Mar 25;23(6):954–961. doi: 10.1093/nar/23.6.954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Giles R. V., Spiller D. G., Green J. A., Clark R. E., Tidd D. M. Optimization of antisense oligodeoxynucleotide structure for targeting bcr-abl mRNA. Blood. 1995 Jul 15;86(2):744–754. [PubMed] [Google Scholar]
  20. Giles R. V., Spiller D. G., Tidd D. M. Chimeric oligodeoxynucleotide analogues: enhanced cell uptake of structures which direct ribonuclease H with high specificity. Anticancer Drug Des. 1993 Feb;8(1):33–51. [PubMed] [Google Scholar]
  21. Giles R. V., Spiller D. G., Tidd D. M. Detection of ribonuclease H-generated mRNA fragments in human leukemia cells following reversible membrane permeabilization in the presence of antisense oligodeoxynucleotides. Antisense Res Dev. 1995 Spring;5(1):23–31. doi: 10.1089/ard.1995.5.23. [DOI] [PubMed] [Google Scholar]
  22. Giles R. V., Tidd D. M. Enhanced RNase H activity with methylphosphonodiester/phosphodiester chimeric antisense oligodeoxynucleotides. Anticancer Drug Des. 1992 Feb;7(1):37–48. [PubMed] [Google Scholar]
  23. Giles R. V., Tidd D. M. Increased specificity for antisense oligodeoxynucleotide targeting of RNA cleavage by RNase H using chimeric methylphosphonodiester/phosphodiester structures. Nucleic Acids Res. 1992 Feb 25;20(4):763–770. doi: 10.1093/nar/20.4.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Groffen J., Stephenson J. R., Heisterkamp N., de Klein A., Bartram C. R., Grosveld G. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell. 1984 Jan;36(1):93–99. doi: 10.1016/0092-8674(84)90077-1. [DOI] [PubMed] [Google Scholar]
  25. Hanecak R., Brown-Driver V., Fox M. C., Azad R. F., Furusako S., Nozaki C., Ford C., Sasmor H., Anderson K. P. Antisense oligonucleotide inhibition of hepatitis C virus gene expression in transformed hepatocytes. J Virol. 1996 Aug;70(8):5203–5212. doi: 10.1128/jvi.70.8.5203-5212.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Höltke H. J., Kessler C. Non-radioactive labeling of RNA transcripts in vitro with the hapten digoxigenin (DIG); hybridization and ELISA-based detection. Nucleic Acids Res. 1990 Oct 11;18(19):5843–5851. doi: 10.1093/nar/18.19.5843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Konopka J. B., Watanabe S. M., Witte O. N. An alteration of the human c-abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity. Cell. 1984 Jul;37(3):1035–1042. doi: 10.1016/0092-8674(84)90438-0. [DOI] [PubMed] [Google Scholar]
  28. Lesnik E. A., Guinosso C. J., Kawasaki A. M., Sasmor H., Zounes M., Cummins L. L., Ecker D. J., Cook P. D., Freier S. M. Oligodeoxynucleotides containing 2'-O-modified adenosine: synthesis and effects on stability of DNA:RNA duplexes. Biochemistry. 1993 Aug 3;32(30):7832–7838. doi: 10.1021/bi00081a031. [DOI] [PubMed] [Google Scholar]
  29. Loke S. L., Stein C. A., Zhang X. H., Mori K., Nakanishi M., Subasinghe C., Cohen J. S., Neckers L. M. Characterization of oligonucleotide transport into living cells. Proc Natl Acad Sci U S A. 1989 May;86(10):3474–3478. doi: 10.1073/pnas.86.10.3474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Monia B. P., Johnston J. F., Sasmor H., Cummins L. L. Nuclease resistance and antisense activity of modified oligonucleotides targeted to Ha-ras. J Biol Chem. 1996 Jun 14;271(24):14533–14540. doi: 10.1074/jbc.271.24.14533. [DOI] [PubMed] [Google Scholar]
  31. Monia B. P., Lesnik E. A., Gonzalez C., Lima W. F., McGee D., Guinosso C. J., Kawasaki A. M., Cook P. D., Freier S. M. Evaluation of 2'-modified oligonucleotides containing 2'-deoxy gaps as antisense inhibitors of gene expression. J Biol Chem. 1993 Jul 5;268(19):14514–14522. [PubMed] [Google Scholar]
  32. Moulds C., Lewis J. G., Froehler B. C., Grant D., Huang T., Milligan J. F., Matteucci M. D., Wagner R. W. Site and mechanism of antisense inhibition by C-5 propyne oligonucleotides. Biochemistry. 1995 Apr 18;34(15):5044–5053. doi: 10.1021/bi00015a015. [DOI] [PubMed] [Google Scholar]
  33. Nestle F. O., Mitra R. S., Bennett C. F., Chan H., Nickoloff B. J. Cationic lipid is not required for uptake and selective inhibitory activity of ICAM-1 phosphorothioate antisense oligonucleotides in keratinocytes. J Invest Dermatol. 1994 Oct;103(4):569–575. doi: 10.1111/1523-1747.ep12396876. [DOI] [PubMed] [Google Scholar]
  34. Noonberg S. B., Garovoy M. R., Hunt C. A. Characteristics of oligonucleotide uptake in human keratinocyte cultures. J Invest Dermatol. 1993 Nov;101(5):727–731. doi: 10.1111/1523-1747.ep12371683. [DOI] [PubMed] [Google Scholar]
  35. O'Brien S. G., Kirkland M. A., Melo J. V., Rao M. H., Davidson R. J., McDonald C., Goldman J. M. Antisense BCR-ABL oligomers cause non-specific inhibition of chronic myeloid leukemia cell lines. Leukemia. 1994 Dec;8(12):2156–2162. [PubMed] [Google Scholar]
  36. Sanghvi Y. S., Hoke G. D., Freier S. M., Zounes M. C., Gonzalez C., Cummins L., Sasmor H., Cook P. D. Antisense oligodeoxynucleotides: synthesis, biophysical and biological evaluation of oligodeoxynucleotides containing modified pyrimidines. Nucleic Acids Res. 1993 Jul 11;21(14):3197–3203. doi: 10.1093/nar/21.14.3197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sawyers C. L., Callahan W., Witte O. N. Dominant negative MYC blocks transformation by ABL oncogenes. Cell. 1992 Sep 18;70(6):901–910. doi: 10.1016/0092-8674(92)90241-4. [DOI] [PubMed] [Google Scholar]
  38. Shoji Y., Akhtar S., Periasamy A., Herman B., Juliano R. L. Mechanism of cellular uptake of modified oligodeoxynucleotides containing methylphosphonate linkages. Nucleic Acids Res. 1991 Oct 25;19(20):5543–5550. doi: 10.1093/nar/19.20.5543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Skórski T., Szczylik C., Malaguarnera L., Calabretta B. Gene-targeted specific inhibition of chronic myeloid leukemia cell growth by BCR-ABL antisense oligodeoxynucleotides. Folia Histochem Cytobiol. 1991;29(3):85–89. [PubMed] [Google Scholar]
  40. Smetsers T. F., Skorski T., van de Locht L. T., Wessels H. M., Pennings A. H., de Witte T., Calabretta B., Mensink E. J. Antisense BCR-ABL oligonucleotides induce apoptosis in the Philadelphia chromosome-positive cell line BV173. Leukemia. 1994 Jan;8(1):129–140. [PubMed] [Google Scholar]
  41. Smetsers T. F., van de Locht L. T., Pennings A. H., Wessels H. M., de Witte T. M., Mensink E. J. Phosphorothioate BCR-ABL antisense oligonucleotides induce cell death, but fail to reduce cellular bcr-abl protein levels. Leukemia. 1995 Jan;9(1):118–130. [PubMed] [Google Scholar]
  42. Spiller D. G., Tidd D. M. Nuclear delivery of antisense oligodeoxynucleotides through reversible permeabilization of human leukemia cells with streptolysin O. Antisense Res Dev. 1995 Spring;5(1):13–21. doi: 10.1089/ard.1995.5.13. [DOI] [PubMed] [Google Scholar]
  43. Spiller D. G., Tidd D. M. The uptake kinetics of chimeric oligodeoxynucleotide analogues in human leukaemia MOLT-4 cells. Anticancer Drug Des. 1992 Apr;7(2):115–129. [PubMed] [Google Scholar]
  44. Stein C. A. Phosphorothioate antisense oligodeoxynucleotides: questions of specificity. Trends Biotechnol. 1996 May;14(5):147–149. doi: 10.1016/0167-7799(96)20006-X. [DOI] [PubMed] [Google Scholar]
  45. Stein C. A., Subasinghe C., Shinozuka K., Cohen J. S. Physicochemical properties of phosphorothioate oligodeoxynucleotides. Nucleic Acids Res. 1988 Apr 25;16(8):3209–3221. doi: 10.1093/nar/16.8.3209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Szczylik C., Skorski T., Nicolaides N. C., Manzella L., Malaguarnera L., Venturelli D., Gewirtz A. M., Calabretta B. Selective inhibition of leukemia cell proliferation by BCR-ABL antisense oligodeoxynucleotides. Science. 1991 Aug 2;253(5019):562–565. doi: 10.1126/science.1857987. [DOI] [PubMed] [Google Scholar]
  47. Sánchez-García I., Grütz G. Tumorigenic activity of the BCR-ABL oncogenes is mediated by BCL2. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5287–5291. doi: 10.1073/pnas.92.12.5287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Vaerman J. L., Lammineur C., Moureau P., Lewalle P., Deldime F., Blumenfeld M., Martiat P. BCR-ABL antisense oligodeoxyribonucleotides suppress the growth of leukemic and normal hematopoietic cells by a sequence-specific but nonantisense mechanism. Blood. 1995 Nov 15;86(10):3891–3896. [PubMed] [Google Scholar]
  49. Wagner R. W., Matteucci M. D., Grant D., Huang T., Froehler B. C. Potent and selective inhibition of gene expression by an antisense heptanucleotide. Nat Biotechnol. 1996 Jul;14(7):840–844. doi: 10.1038/nbt0796-840. [DOI] [PubMed] [Google Scholar]
  50. Wagner R. W., Matteucci M. D., Lewis J. G., Gutierrez A. J., Moulds C., Froehler B. C. Antisense gene inhibition by oligonucleotides containing C-5 propyne pyrimidines. Science. 1993 Jun 4;260(5113):1510–1513. doi: 10.1126/science.7684856. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES