Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Apr 1;26(7):1854–1856. doi: 10.1093/nar/26.7.1854

Inosine 5'-triphosphate can dramatically increase the yield of NASBA products targeting GC-rich and intramolecular base-paired viroid RNA.

K Nakahara 1, T Hataya 1, I Uyeda 1
PMCID: PMC147469  PMID: 9512564

Abstract

Nucleic acid sequence-based amplification (NASBA) according to the standard protocol failed to amplify cRNA of viroids, probably because of their GC-rich and intramolecular base-paired structure. However, NASBA in the presence of inosine 5'-triphosphate successfully amplified the cRNAs to viroids in total nucleic acid extracts from citrus plants. As sequence specificity of the cRNA to viroids was confirmed by northern analysis, the amplification and fidelity of cRNAs are sufficient for the sensitive and specific detection of viroids.

Full Text

The Full Text of this article is available as a PDF (69.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bass B. L., Weintraub H. An unwinding activity that covalently modifies its double-stranded RNA substrate. Cell. 1988 Dec 23;55(6):1089–1098. doi: 10.1016/0092-8674(88)90253-x. [DOI] [PubMed] [Google Scholar]
  2. Guatelli J. C., Whitfield K. M., Kwoh D. Y., Barringer K. J., Richman D. D., Gingeras T. R. Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1874–1878. doi: 10.1073/pnas.87.5.1874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hataya T., Inoue A. K., Shikata E. A PCR-microplate hybridization method for plant virus detection. J Virol Methods. 1994 Feb;46(2):223–236. doi: 10.1016/0166-0934(94)90105-8. [DOI] [PubMed] [Google Scholar]
  4. Kievits T., van Gemen B., van Strijp D., Schukkink R., Dircks M., Adriaanse H., Malek L., Sooknanan R., Lens P. NASBA isothermal enzymatic in vitro nucleic acid amplification optimized for the diagnosis of HIV-1 infection. J Virol Methods. 1991 Dec;35(3):273–286. doi: 10.1016/0166-0934(91)90069-c. [DOI] [PubMed] [Google Scholar]
  5. Puchta H., Ramm K., Luckinger R., Hadas R., Bar-Joseph M., Snger H. L. Primary and secondary structure of citrus viroid IV (CVd IV), a new chimeric viroid present in dwarfed grapefruit in Israel. Nucleic Acids Res. 1991 Dec 11;19(23):6640–6640. doi: 10.1093/nar/19.23.6640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Sano T., Hataya T., Shikata E. Complete nucleotide sequence of a viroid isolated from Etrog citron, a new member of hop stunt viroid group. Nucleic Acids Res. 1988 Jan 11;16(1):347–347. doi: 10.1093/nar/16.1.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Visvader J. E., Gould A. R., Bruening G. E., Symons R. H. Citrus exocortis viroid: nucleotide sequence and secondary structure of an Australian isolate. FEBS Lett. 1982 Jan 25;137(2):288–292. doi: 10.1016/0014-5793(82)80369-4. [DOI] [PubMed] [Google Scholar]
  8. van Gemen B., Kievits T., Schukkink R., van Strijp D., Malek L. T., Sooknanan R., Huisman H. G., Lens P. Quantification of HIV-1 RNA in plasma using NASBA during HIV-1 primary infection. J Virol Methods. 1993 Jul;43(2):177–187. doi: 10.1016/0166-0934(93)90075-3. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES