Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1986 Mar;65:77–85. doi: 10.1289/ehp.866577

Characterization of a highly negative and labile binding protein induced in Euglena gracilis by cadmium.

D J Gingrich, D N Weber, C F Shaw, J S Garvey, D H Petering
PMCID: PMC1474697  PMID: 3011392

Abstract

The physiochemical properties and physiological significance of the cadmium-binding protein (CdBP) of the algae Euglena gracilis have been studied. Following in vivo exposure of cells to 0.4 or 1.3 micrograms/mL of Cd2+, all the cytosolic Cd is bound to high molecular weight species. At 4.7 micrograms/mL, appreciable CdBP has formed in cells grown under illumination or in the dark. An analogous ZnBP could not be isolated from control or Zn-exposed (20 micrograms/mL) cells, but zinc and a trace of copper were bound to the CdBP when 2-mercaptoethanol (2-ME) is added to the homogenates of Cd-treated cells and the buffers used during isolation. The large pool of very low molecular weight zinc species previously reported is increased when cells are exposed to high cadmium levels. Two distinct species, BP-1 and BP-2 are resolved by ion-exchange chromatography on DEAE-Sephadex. Unusually high conductivities (25 and 40 mSiemen) are required to displace them, indicating that they are very negatively charged proteins at pH 8.6. The pH for half-titration of bound Cd2+ is between 5 and 6. EDTA (0.4 M) and the CdBP isolated by gel-exclusion chromatography react biphasically with pseudo-first-order rate constants of 4 +/- 3 X 10(-4) sec-1 and 7 +/- 2 X 10(-5) sec-1. Neither form of the CdBP cross-reacts with antibodies to rat liver metallothionein (MT) antibodies. The structural, chemical, and functional differences between the Euglena CdBPs and mammalian MTs are discussed.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
77

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Crossley L. G., Falchuk K. H., Vallee B. L. Messenger ribonucleic acid function and protein synthesis in zinc-deficient Euglena gracilis. Biochemistry. 1982 Oct 12;21(21):5359–5363. doi: 10.1021/bi00264a037. [DOI] [PubMed] [Google Scholar]
  2. Falchuk K. H., Fawcett D. W., Vallee B. L. Role of zinc in cell division of Euglena gracilis. J Cell Sci. 1975 Jan;17(1):57–78. doi: 10.1242/jcs.17.1.57. [DOI] [PubMed] [Google Scholar]
  3. Garvey J. S., Vander Mallie R. J., Chang C. C. Radioimmunoassay of metallothioneins. Methods Enzymol. 1982;84:121–138. doi: 10.1016/0076-6879(82)84011-1. [DOI] [PubMed] [Google Scholar]
  4. Laib J. E., Shaw C. F., 3rd, Petering D. H., Eidsness M. K., Elder R. C., Garvey J. S. Formation and characterization of aurothioneins: Au,Zn,Cd-thionein, Au,Cd-thionein, and (thiomalato-Au)chi-thionein. Biochemistry. 1985 Apr 9;24(8):1977–1986. doi: 10.1021/bi00329a027. [DOI] [PubMed] [Google Scholar]
  5. Lerch K., Ammer D., Olafson R. W. Crab metallothionein. Primary structures of metallothioneins 1 and 2. J Biol Chem. 1982 Mar 10;257(5):2420–2426. [PubMed] [Google Scholar]
  6. Li T. Y., Kraker A. J., Shaw C. F., 3rd, Petering D. H. Ligand substitution reactions of metallothioneins with EDTA and apo-carbonic anhydrase. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6334–6338. doi: 10.1073/pnas.77.11.6334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Mallie R. J., Garvey J. S. Production and study of antibody produced against rat cadmium thionein. Immunochemistry. 1978 Dec;15(12):857–868. doi: 10.1016/0161-5890(78)90119-0. [DOI] [PubMed] [Google Scholar]
  8. Minkel D. T., Poulsen K., Wielgus S., Shaw C. F., 3rd, Petering D. H. On the sensitivity of metallothioneins to oxidation during isolation. Biochem J. 1980 Nov 1;191(2):475–485. doi: 10.1042/bj1910475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Olafson R. W., Abel K., Sim R. G. Prokaryotic metallothionein: preliminary characterization of a blue-green alga heavy metal-binding protein. Biochem Biophys Res Commun. 1979 Jul 12;89(1):36–43. doi: 10.1016/0006-291x(79)90939-2. [DOI] [PubMed] [Google Scholar]
  10. Otvos J. D., Armitage I. M. Structure of the metal clusters in rabbit liver metallothionein. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7094–7098. doi: 10.1073/pnas.77.12.7094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Price C. A., Vallee B. L. Euglena gracilis, A Test Organism for Study of Zinc. Plant Physiol. 1962 May;37(3):428–433. doi: 10.1104/pp.37.3.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rodbard D., Lenox R. H., Wray H. L., Ramseth D. Statistical characterization of the random errors in the radioimmunoassay dose--response variable. Clin Chem. 1976 Mar;22(3):350–358. [PubMed] [Google Scholar]
  13. Thomas D. G., Solbe J. F., Kay J., Cryer A. Environmental cadmium is not sequestered by metallothionein in rainbow trout. Biochem Biophys Res Commun. 1983 Jan 27;110(2):584–592. doi: 10.1016/0006-291x(83)91190-7. [DOI] [PubMed] [Google Scholar]
  14. Winge D. R., Garvey J. S. Antigenicity of metallothionein. Proc Natl Acad Sci U S A. 1983 May;80(9):2472–2476. doi: 10.1073/pnas.80.9.2472. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES