Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1986 Mar;65:21–27. doi: 10.1289/ehp.866521

Primary structure and spectroscopic studies of Neurospora copper metallothionein.

M Beltramini, K Lerch
PMCID: PMC1474700  PMID: 3011391

Abstract

When Neurospora crassa is grown in the presence of Cu(II) ions, it accumulates the metal with the concomitant synthesis of a low molecular weight copper-binding protein. The molecule binds 6 g-atom of copper per mole protein (Mr = 2200) and shows a striking sequence homology to the zinc- and cadmium-binding vertebrate metallothioneins. Absorption, circular dichroism, and electron paramagnetic resonance spectroscopy of Neurospora metallothionein indicate the copper to be bound to cysteinyl residues as a Cu(I)-thiolate complex of the polymeric mu-thiolate structure [Cu(I)6RS7]-. This metal-binding mode is also in agreement with the unusual luminescence of the protein. Spectral perturbation studies with HgCl2 and p-(chloromercuri)benzoate suggest that the 6 Cu(I)ions are coordinated to the seven cysteinyl residues in the form of a single metal cluster. Neurospora apometallothionein is also capable of binding in vivo group IIB metal ions [Zn(II), Cd(II), and Hg(II)] as well as paramagnetic Co(II) ions with an overall metal-to-protein stoichiometry of 3. The spectroscopic properties of the fully substituted forms are indicative of a distorted tetrahedral coordination. However, metal titration of the apoprotein shows the third metal ion to be differently coordinated than the other two metal ions. This difference can be explained by the presence of only seven cysteine residues in Neurospora metallothionein as opposed to nine cysteine residues in the three-metal cluster of the mammalian metallothioneins.

Full text

PDF
21

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beltramini M., Lerch K. Copper transfer between Neurospora copper metallothionein and type 3 copper apoproteins. FEBS Lett. 1982 Jun 7;142(2):219–222. doi: 10.1016/0014-5793(82)80138-5. [DOI] [PubMed] [Google Scholar]
  2. Beltramini M., Lerch K. Luminescence properties of Neurospora copper metallothionein. FEBS Lett. 1981 May 18;127(2):201–203. doi: 10.1016/0014-5793(81)80204-9. [DOI] [PubMed] [Google Scholar]
  3. Beltramini M., Lerch K. Spectroscopic studies on Neurospora copper metallothionein. Biochemistry. 1983 Apr 26;22(9):2043–2048. doi: 10.1021/bi00278a002. [DOI] [PubMed] [Google Scholar]
  4. Beltramini M., Lerch K., Vasák M. Metal substitution of Neurospora copper metallothionein. Biochemistry. 1984 Jul 17;23(15):3422–3427. doi: 10.1021/bi00310a007. [DOI] [PubMed] [Google Scholar]
  5. Huang I. Y., Yoshida A. Mouse liver metallothioneins. Complete amino acid sequence of metallothionein-I. J Biol Chem. 1977 Nov 25;252(22):8217–8221. [PubMed] [Google Scholar]
  6. KAGI J. H., VALEE B. L. Metallothionein: a cadmium- and zinc-containing protein from equine renal cortex. J Biol Chem. 1960 Dec;235:3460–3465. [PubMed] [Google Scholar]
  7. Kissling M. M., Kägi H. R. Primary structure of human hepatic metallothionein. FEBS Lett. 1977 Oct 15;82(2):247–250. doi: 10.1016/0014-5793(77)80594-2. [DOI] [PubMed] [Google Scholar]
  8. Kojima Y., Berger C., Kägi J. H. The amino acid sequence of equine metallothioneins. Experientia Suppl. 1979;34:153–161. doi: 10.1007/978-3-0348-6493-0_6. [DOI] [PubMed] [Google Scholar]
  9. Kägi J. H., Vasák M., Lerch K., Gilg D. E., Hunziker P., Bernhard W. R., Good M. Structure of mammalian metallothionein. Environ Health Perspect. 1984 Mar;54:93–103. doi: 10.1289/ehp.54-1568188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lehrer S. S. Fluorescence and absorption studies of the binding of copper and iron to transferrin. J Biol Chem. 1969 Jul 10;244(13):3613–3617. [PubMed] [Google Scholar]
  11. Lerch K. Copper metallothionein, a copper-binding protein from Neurospora crassa. Nature. 1980 Mar 27;284(5754):368–370. doi: 10.1038/284368a0. [DOI] [PubMed] [Google Scholar]
  12. Münger K., Germann U. A., Lerch K. Isolation and structural organization of the Neurospora crassa copper metallothionein gene. EMBO J. 1985 Oct;4(10):2665–2668. doi: 10.1002/j.1460-2075.1985.tb03985.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Otvos J. D., Armitage I. M. Structure of the metal clusters in rabbit liver metallothionein. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7094–7098. doi: 10.1073/pnas.77.12.7094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Vasák M., Kägi J. H., Hill H. A. Zinc(II), cadmium(II), and mercury(II) thiolate transitions in metallothionein. Biochemistry. 1981 May 12;20(10):2852–2856. doi: 10.1021/bi00513a022. [DOI] [PubMed] [Google Scholar]
  15. Vasák M., Kägi J. H. Metal thiolate clusters in cobalt(II)-metallothionein. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6709–6713. doi: 10.1073/pnas.78.11.6709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Winge D. R., Miklossy K. A. Domain nature of metallothionein. J Biol Chem. 1982 Apr 10;257(7):3471–3476. [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES