Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Apr 1;26(7):1819–1825. doi: 10.1093/nar/26.7.1819

Stimulation and suppression of PCR-mediated recombination.

M S Judo 1, A B Wedel 1, C Wilson 1
PMCID: PMC147471  PMID: 9512558

Abstract

Recombination, or chimera formation, is known to occur between related template sequences present in a single PCR amplification. To characterize the conditions under which such recombinant amplification products form we monitored the exchange of sequence between two homologous templates carrying different restriction sites separated by 282 bp. Using a typical cycling program the rates of recombination between the two restriction sites were 1 and 7% using Taq and Vent polymerases respectively over 12 doublings. However, by using long elongation times and cycling only to the mid-point of the amplification recombination could be suppressed below visual detection with both polymerases. Conversely, cycling programs designed to promote incomplete primer elongation and subsequent template strand exchange stimulated recombination to >20%.

Full Text

The Full Text of this article is available as a PDF (608.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradley R. D., Hillis D. M. Recombinant DNA sequences generated by PCR amplification. Mol Biol Evol. 1997 May;14(5):592–593. doi: 10.1093/oxfordjournals.molbev.a025797. [DOI] [PubMed] [Google Scholar]
  2. Breaker R. R., Joyce G. F. Inventing and improving ribozyme function: rational design versus iterative selection methods. Trends Biotechnol. 1994 Jul;12(7):268–275. doi: 10.1016/0167-7799(94)90138-4. [DOI] [PubMed] [Google Scholar]
  3. Clackson T., Wells J. A. In vitro selection from protein and peptide libraries. Trends Biotechnol. 1994 May;12(5):173–184. doi: 10.1016/0167-7799(94)90079-5. [DOI] [PubMed] [Google Scholar]
  4. Hanes J., Plückthun A. In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci U S A. 1997 May 13;94(10):4937–4942. doi: 10.1073/pnas.94.10.4937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Joyce G. F. Directed molecular evolution. Sci Am. 1992 Dec;267(6):90–97. doi: 10.1038/scientificamerican1292-90. [DOI] [PubMed] [Google Scholar]
  6. Kumar P. K., Ellington A. D. Artificial evolution and natural ribozymes. FASEB J. 1995 Sep;9(12):1183–1195. doi: 10.1096/fasebj.9.12.7672511. [DOI] [PubMed] [Google Scholar]
  7. Marton A., Delbecchi L., Bourgaux P. DNA nicking favors PCR recombination. Nucleic Acids Res. 1991 May 11;19(9):2423–2426. doi: 10.1093/nar/19.9.2423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Meyerhans A., Vartanian J. P., Wain-Hobson S. DNA recombination during PCR. Nucleic Acids Res. 1990 Apr 11;18(7):1687–1691. doi: 10.1093/nar/18.7.1687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  10. Stemmer W. P. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10747–10751. doi: 10.1073/pnas.91.22.10747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Stemmer W. P. Rapid evolution of a protein in vitro by DNA shuffling. Nature. 1994 Aug 4;370(6488):389–391. doi: 10.1038/370389a0. [DOI] [PubMed] [Google Scholar]
  12. Szostak J. W. In vitro genetics. Trends Biochem Sci. 1992 Mar;17(3):89–93. doi: 10.1016/0968-0004(92)90242-2. [DOI] [PubMed] [Google Scholar]
  13. Tuerk C., Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990 Aug 3;249(4968):505–510. doi: 10.1126/science.2200121. [DOI] [PubMed] [Google Scholar]
  14. Yang Y. L., Wang G., Dorman K., Kaplan A. H. Long polymerase chain reaction amplification of heterogeneous HIV type 1 templates produces recombination at a relatively high frequency. AIDS Res Hum Retroviruses. 1996 Mar 1;12(4):303–306. doi: 10.1089/aid.1996.12.303. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES