Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1986 Mar;65:293–298. doi: 10.1289/ehp.8665293

Absorption, metabolism, and excretion of di(2-ethylhexyl) phthalate by rats and mice.

P W Albro
PMCID: PMC1474712  PMID: 3086077

Abstract

There is convincing evidence in the literature that most of the adverse biological effects of phthalate diesters are actually effects of metabolites rather than of the parent compounds. If so, the dramatic species differences in endpoint metabolic profiles make it essential that metabolism of phthalates be understood in detail, including the factors that may alter the metabolism. A metabolic pathway for phthalates having saturated alkyl groups has been postulated based on identification of metabolites produced in vivo and excreted in urine. The first few steps in the postulated pathway have been confirmed in vitro using enzymatically active preparations from rats and mice; some details of the nature of these early steps have been learned. Although some information concerning later steps is available, much remains to be learned in this area. Species differences are postulated to involve kinetics of several biochemical and physiological events acting in concert or competition. Among these interacting factors are competition of at least three enzymes for phthalate monoesters as substrate, relative kidney clearance rates for different metabolites, relative Km values of oxidative enzymes for the same precursors in different species, and relative equilibria between glucuronide formation and hydrolysis. Essential information that must be obtained in the future includes which metabolites play a causal role in which biological effects, and what factors (age, diet, state of health, etc.) can modify the metabolism of phthalate esters and in what way.

Full text

PDF
293

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albro P. W., Chae K., Philpot R., Corbett J. T., Schroeder J., Jordan S. In vitro metabolism of mono-2-ethylhexyl phthalate by microsomal enzymes. Similarity to omega- and (omega-1) oxidation of fatty acids. Drug Metab Dispos. 1984 Nov-Dec;12(6):742–748. [PubMed] [Google Scholar]
  2. Albro P. W., Corbett B. J., Hass J. R. The mechanism for nonspecific lipase from rat pancreas. Biochim Biophys Acta. 1976 Jun 22;431(3):493–506. doi: 10.1016/0005-2760(76)90215-0. [DOI] [PubMed] [Google Scholar]
  3. Albro P. W., Corbett J. T., Marbury D., Parker C. Urinary metabolites of orally administered di-(5-hexenyl) phthalate and di-(9-decenyl) phthalate in the rat. Xenobiotica. 1984 May;14(5):389–398. doi: 10.3109/00498258409151427. [DOI] [PubMed] [Google Scholar]
  4. Albro P. W., Corbett J. T., Schroeder J. L., Jordan S., Matthews H. B. Pharmacokinetics, interactions with macromolecules and species differences in metabolism of DEHP. Environ Health Perspect. 1982 Nov;45:19–25. doi: 10.1289/ehp.824519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Albro P. W., Corbett J. T., Schroeder J. L. Metabolism of methyl n-amyl ketone (2-heptanone) and its binding to DNA of rat liver in vivo and in vitro. Chem Biol Interact. 1984 Oct;51(3):295–308. doi: 10.1016/0009-2797(84)90155-8. [DOI] [PubMed] [Google Scholar]
  6. Albro P. W., Jordan S. T., Schroeder J. L., Corbett J. T. Chromatographic separation and quantitative determination of the metabolites of di-(2-ethylhexyl) phthalate from urine of laboratory animals. J Chromatogr. 1982 Jul 23;244(1):65–79. doi: 10.1016/s0021-9673(00)80123-5. [DOI] [PubMed] [Google Scholar]
  7. Albro P. W., Latimer A. D. Pancreatic nonspecific lipase, an enzyme highly specific for micelles. Biochemistry. 1974 Mar 26;13(7):1431–1439. doi: 10.1021/bi00704a018. [DOI] [PubMed] [Google Scholar]
  8. Albro P. W., Moore B. Identification of the metabolites of simple phthalate diesters in rat urine. J Chromatogr. 1974 Jul 17;94(0):209–218. doi: 10.1016/s0021-9673(01)92368-4. [DOI] [PubMed] [Google Scholar]
  9. Albro P. W. The metabolism of 2-ethylhexanol in rats. Xenobiotica. 1975 Oct;5(10):625–636. doi: 10.3109/00498257509056132. [DOI] [PubMed] [Google Scholar]
  10. Albro P. W., Thomas R. O. Enzymatic hydrolysis of di-(2-ethylhexyl) phthalate by lipases. Biochim Biophys Acta. 1973 Jun 21;306(3):380–390. doi: 10.1016/0005-2760(73)90176-8. [DOI] [PubMed] [Google Scholar]
  11. Albro P. W., Tondeur I., Marbury D., Jordan S., Schroeder J., Corbett J. T. Polar metabolites of di-(2-ethylhexyl)phthalate in the rat. Biochim Biophys Acta. 1983 Oct 18;760(2):283–292. doi: 10.1016/0304-4165(83)90175-7. [DOI] [PubMed] [Google Scholar]
  12. Baker R. W. Diethylhexyl phthalate as a factor in blood transfusion and haemodialysis. Toxicology. 1978 Apr;9(4):319–329. doi: 10.1016/0300-483x(78)90015-x. [DOI] [PubMed] [Google Scholar]
  13. Carter J. E., Roll D. B., Petersen R. V. The in vitro hydrolysis of di-(2-ethylhexyl) phthalate by rat tissues. Drug Metab Dispos. 1974 Jul-Aug;2(4):341–344. [PubMed] [Google Scholar]
  14. Curto K. A., Thomas J. A. Comparative effects of diethylhexyl phthalate or monoethylhexyl phthalate on male mouse and rat reproductive organs. Toxicol Appl Pharmacol. 1982 Jan;62(1):121–125. doi: 10.1016/0041-008x(82)90108-9. [DOI] [PubMed] [Google Scholar]
  15. Foster P. M., Cook M. W., Thomas L. V., Walters D. G., Gangolli S. D. Differences in urinary metabolic profile from di-n-butyl phthalate-treated rats and hamsters. A possible explanation for species differences in susceptibility to testicular atrophy. Drug Metab Dispos. 1983 Jan-Feb;11(1):59–61. [PubMed] [Google Scholar]
  16. Ganning A. E., Brunk U., Dallner G. Effects of dietary di(2-ethylhexyl)phthalate on the structure and function of rat hepatocytes. Biochim Biophys Acta. 1983 Aug 17;763(1):72–82. doi: 10.1016/0167-4889(83)90027-7. [DOI] [PubMed] [Google Scholar]
  17. Gollamudi R., Prasanna H. R., Rao R. H., Lawrence W. H., Autian J. Impaired metabolism of di(2-ethylhexyl) phthalate (DEHP) in old rats--an in vitro study. J Toxicol Environ Health. 1983 Oct-Dec;12(4-6):623–632. doi: 10.1080/15287398309530454. [DOI] [PubMed] [Google Scholar]
  18. Gray T. J., Butterworth K. R. Testicular atrophy produced by phthalate esters. Arch Toxicol Suppl. 1980;4:452–455. doi: 10.1007/978-3-642-67729-8_106. [DOI] [PubMed] [Google Scholar]
  19. Gray T. J., Rowland I. R., Foster P. M., Gangolli S. D. Species differences in the testicular toxicity of phthalate esters. Toxicol Lett. 1982 Apr;11(1-2):141–147. doi: 10.1016/0378-4274(82)90119-9. [DOI] [PubMed] [Google Scholar]
  20. Kluwe W. M., Haseman J. K., Douglas J. F., Huff J. E. The carcinogenicity of dietary di(2-ethylhexyl) phthalate (DEHP) in Fischer 344 rats and B6C3F1 mice. J Toxicol Environ Health. 1982 Oct-Nov;10(4-5):797–815. doi: 10.1080/15287398209530296. [DOI] [PubMed] [Google Scholar]
  21. Krauskopf L. G. Studies on the toxicity of phthalates via ingestion. Environ Health Perspect. 1973 Jan;3:61–72. doi: 10.1289/ehp.730361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lake B. G., Gangolli S. D., Grasso P., Lloyd A. G. Studies on the hepatic effects of orally administered di-)2-ethylhexyl) phthalate in the rat. Toxicol Appl Pharmacol. 1975 May;32(2):355–367. doi: 10.1016/0041-008x(75)90226-4. [DOI] [PubMed] [Google Scholar]
  23. Melancon M. J., Lech J. J. Metabolism of di-2-ethylhexyl phthalate by subcellular fractions from rainbow trout liver. Drug Metab Dispos. 1977 Jan-Feb;5(1):29–36. [PubMed] [Google Scholar]
  24. Melnick R. L., Schiller C. M. Mitochondrial toxicity of phthalate esters. Environ Health Perspect. 1982 Nov;45:51–56. doi: 10.1289/ehp.824551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Moody D. E., Reddy J. K. Hepatic peroxisome (microbody) proliferation in rats fed plasticizers and related compounds. Toxicol Appl Pharmacol. 1978 Aug;45(2):497–504. doi: 10.1016/0041-008x(78)90111-4. [DOI] [PubMed] [Google Scholar]
  26. Peck C. C., Albro P. W. Toxic potential of the plasticizer Di(2-ethylhexyl) phthalate in the context of its disposition and metabolism in primates and man. Environ Health Perspect. 1982 Nov;45:11–17. doi: 10.1289/ehp.824511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Peck C. C., Zuck T. F. DEHP in blood. Transfusion. 1977 Jul-Aug;17(4):400–401. doi: 10.1046/j.1537-2995.1977.17477216873.x. [DOI] [PubMed] [Google Scholar]
  28. Reddy J. K., Warren J. R., Reddy M. K., Lalwani N. D. Hepatic and renal effects of peroxisome proliferators: biological implications. Ann N Y Acad Sci. 1982;386:81–110. doi: 10.1111/j.1749-6632.1982.tb21409.x. [DOI] [PubMed] [Google Scholar]
  29. Schulz C. O., Rubin R. J. Distribution, metabolism, and excretion of di-2-ethylhexyl phthalate in the rat. Environ Health Perspect. 1973 Jan;3:123–129. doi: 10.1289/ehp.7303123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Srivastava S. P., Agarwal D. K., Mushtaq M., Seth P. K. Effect of Di-(2-ethylhexyl) phthalate (DEHP) on chemical constituents and enzymatic activity of rat liver. Toxicology. 1978 Nov;11(3):271–275. doi: 10.1016/s0300-483x(78)91639-6. [DOI] [PubMed] [Google Scholar]
  31. Ward J. M., Rice J. M., Creasia D., Lynch P., Riggs C. Dissimilar patterns of promotion by di(2-ethylhexyl)phthalate and phenobarbital of hepatocellular neoplasia initiated by diethylnitrosamine in B6C3F1 mice. Carcinogenesis. 1983 Aug;4(8):1021–1029. doi: 10.1093/carcin/4.8.1021. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES