Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Apr 1;26(7):1588–1596. doi: 10.1093/nar/26.7.1588

Mechanisms of DNA damage by chromium(V) carcinogens.

R N Bose 1, B S Fonkeng 1, S Moghaddas 1, D Stroup 1
PMCID: PMC147475  PMID: 9512527

Abstract

Reactions of bis(2-ethyl-2-hydroxy-butanato)oxochromate(V) with pUC19 DNA, single-stranded calf thymus DNA (ss-ctDNA), a synthetic oligonucleotide, 5'-GATCTATGGACTTACTTCAAGGCCGGGTAATGCTA-3' (35mer), deoxyguanosine and guanine were carried out in Bis-Tris buffer at pH 7.0. The plasmid DNA was only nicked, whereas the single-stranded DNA suffered extensive damage due to oxidation of the ribose moiety. The primary oxidation product was characterized as 5-methylene-2-furanone. Although all four bases (A, C, G and T) were released during the oxidation process, the concentration of guanine exceeds the other three. Orthophosphate and 3'-phosphates were also detected in this reaction. Likewise, the synthetic oliogomer exhibits cleavage at all bases with a higher frequecncy at G sites. This increased cleavage at G sites was more apparent after treating the primary oxidation products with piperidine, which may indicate base oxidation as well. DNA oxidation is shown to proceed through a Cr(V)-DNA intermediate in which chromium(V) is coordinated through the phosphodiester moiety. Two alternative mechanisms for DNA oxidation by oxochromate(V) are proposed to account for formation of 5-methylene-2-furanone, based on hydrogen abstraction or hydride transfer from the C1' site of the ribose followed by hydration and two successive beta-eliminations. It appears that phosphate coordination is a prerequisite for DNA oxidation, since no reactions between chromium(V) and deoxyguanosine or guanine were observed. Two other additional pathways, hydrogen abstraction from C4' and guanine base oxidation, are also discussed.

Full Text

The Full Text of this article is available as a PDF (204.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bose SK, McGlinn WD. Effect of finite mass on gravitational transit time. Phys Rev D Part Fields. 1988 Oct 15;38(8):2335–2337. doi: 10.1103/physrevd.38.2335. [DOI] [PubMed] [Google Scholar]
  2. Bromley S. D., Ward B. W., Dabrowiak J. C. Cationic porphyrins as probes of DNA structure. Nucleic Acids Res. 1986 Nov 25;14(22):9133–9148. doi: 10.1093/nar/14.22.9133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Byrnes R. W., Fiel R. J., Datta-Gupta N. DNA strand scission by iron complexes of meso-tetra(N-methylpyridyl)porphines. Chem Biol Interact. 1988;67(3-4):225–241. doi: 10.1016/0009-2797(88)90060-9. [DOI] [PubMed] [Google Scholar]
  4. Casadevall M., Kortenkamp A. The formation of both apurinic/apyrimidinic sites and single-strand breaks by chromate and glutathione arises from attack by the same single reactive species and is dependent on molecular oxygen. Carcinogenesis. 1995 Apr;16(4):805–809. doi: 10.1093/carcin/16.4.805. [DOI] [PubMed] [Google Scholar]
  5. Dabrowiak J. C., Ward B., Goodisman J. Quantitative footprinting analysis using a DNA-cleaving metalloporphyrin complex. Biochemistry. 1989 Apr 18;28(8):3314–3322. doi: 10.1021/bi00434a029. [DOI] [PubMed] [Google Scholar]
  6. De Flora S., Bagnasco M., Serra D., Zanacchi P. Genotoxicity of chromium compounds. A review. Mutat Res. 1990 Mar;238(2):99–172. doi: 10.1016/0165-1110(90)90007-x. [DOI] [PubMed] [Google Scholar]
  7. Ding L., Bernadou J., Meunier B. Oxidative degradation of cationic metalloporphyrins in the presence of nucleic acids: a way to binding constants? Bioconjug Chem. 1991 Jul-Aug;2(4):201–206. doi: 10.1021/bc00010a002. [DOI] [PubMed] [Google Scholar]
  8. Farrell R. P., Judd R. J., Lay P. A., Dixon N. E., Baker R. S., Bonin A. M. Chromium(V)-induced cleavage of DNA: are chromium(V) complexes the active carcinogens in chromium(VI)-induced cancers? Chem Res Toxicol. 1989 Jul-Aug;2(4):227–229. doi: 10.1021/tx00010a002. [DOI] [PubMed] [Google Scholar]
  9. Floyd R. A., West M. S., Eneff K. L., Hogsett W. E., Tingey D. T. Hydroxyl free radical mediated formation of 8-hydroxyguanine in isolated DNA. Arch Biochem Biophys. 1988 Apr;262(1):266–272. doi: 10.1016/0003-9861(88)90188-9. [DOI] [PubMed] [Google Scholar]
  10. Floyd R. A., West M. S., Eneff K. L., Schneider J. E., Wong P. K., Tingey D. T., Hogsett W. E. Conditions influencing yield and analysis of 8-hydroxy-2'-deoxyguanosine in oxidatively damaged DNA. Anal Biochem. 1990 Jul;188(1):155–158. doi: 10.1016/0003-2697(90)90544-j. [DOI] [PubMed] [Google Scholar]
  11. Gasmi G., Pasdeloup M., Pratviel G., Pitié M., Bernadou J., Meunier B. 31P NMR characterization of terminal phosphates induced on DNA by the artificial nuclease 'Mn-TMPyP/KHSO5' in comparison with DNases I and II. Nucleic Acids Res. 1991 Jun 11;19(11):2835–2839. doi: 10.1093/nar/19.11.2835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hui X. W., Gresh N., Pullman B. Modelling of the binding specificity in the interactions of cationic porphyrins with DNA. Nucleic Acids Res. 1990 Mar 11;18(5):1109–1114. doi: 10.1093/nar/18.5.1109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Imlay J. A., Chin S. M., Linn S. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science. 1988 Apr 29;240(4852):640–642. doi: 10.1126/science.2834821. [DOI] [PubMed] [Google Scholar]
  14. Kappen L. S., Chen C. Q., Goldberg I. H. Atypical abasic sites generated by neocarzinostatin at sequence-specific cytidylate residues in oligodeoxynucleotides. Biochemistry. 1988 Jun 14;27(12):4331–4340. doi: 10.1021/bi00412a021. [DOI] [PubMed] [Google Scholar]
  15. Kappen L. S., Goldberg I. H. Identification of 2-deoxyribonolactone at the site of neocarzinostatin-induced cytosine release in the sequence d(AGC). Biochemistry. 1989 Feb 7;28(3):1027–1032. doi: 10.1021/bi00429a016. [DOI] [PubMed] [Google Scholar]
  16. Klein C. B., Frenkel K., Costa M. The role of oxidative processes in metal carcinogenesis. Chem Res Toxicol. 1991 Nov-Dec;4(6):592–604. doi: 10.1021/tx00024a001. [DOI] [PubMed] [Google Scholar]
  17. Kortenkamp A., Ozolins Z., Beyersmann D., O'Brien P. Generation of PM2 DNA breaks in the course of reduction of chromium(VI) by glutathione. Mutat Res. 1989 Feb;216(1):19–26. doi: 10.1016/0165-1161(89)90019-8. [DOI] [PubMed] [Google Scholar]
  18. Kuwabara M., Yoon C., Goyne T., Thederahn T., Sigman D. S. Nuclease activity of 1,10-phenanthroline-copper ion: reaction with CGCGAATTCGCG and its complexes with netropsin and EcoRI. Biochemistry. 1986 Nov 18;25(23):7401–7408. doi: 10.1021/bi00371a023. [DOI] [PubMed] [Google Scholar]
  19. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  20. Pitié M., Pratviel G., Bernadou J., Meunier B. Preferential hydroxylation by the chemical nuclease meso-tetrakis-(4-N-methylpyridiniumyl)porphyrinatomanganeseIII pentaacetate/KHSO5 at the 5' carbon of deoxyriboses on both 3' sides of three contiguous A.T base pairs in short double-stranded oligonucleotides. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3967–3971. doi: 10.1073/pnas.89.9.3967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pratviel G., Pitié M., Bernadou J., Meunier B. Mechanism of DNA cleavage by cationic manganese porphyrins: hydroxylations at the 1'-carbon and 5'-carbon atoms of deoxyriboses as initial damages. Nucleic Acids Res. 1991 Nov 25;19(22):6283–6288. doi: 10.1093/nar/19.22.6283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rodriguez M., Kodadek T., Torres M., Bard A. J. Cleavage of DNA by electrochemically activated MnIII and FeIII complexes of meso-tetrakis (N-methyl-4-pyridiniumyl)porphine. Bioconjug Chem. 1990 Mar-Apr;1(2):123–131. doi: 10.1021/bc00002a006. [DOI] [PubMed] [Google Scholar]
  23. Shi X., Mao Y., Knapton A. D., Ding M., Rojanasakul Y., Gannett P. M., Dalal N., Liu K. Reaction of Cr(VI) with ascorbate and hydrogen peroxide generates hydroxyl radicals and causes DNA damage: role of a Cr(IV)-mediated Fenton-like reaction. Carcinogenesis. 1994 Nov;15(11):2475–2478. doi: 10.1093/carcin/15.11.2475. [DOI] [PubMed] [Google Scholar]
  24. Stearns D. M., Kennedy L. J., Courtney K. D., Giangrande P. H., Phieffer L. S., Wetterhahn K. E. Reduction of chromium(VI) by ascorbate leads to chromium-DNA binding and DNA strand breaks in vitro. Biochemistry. 1995 Jan 24;34(3):910–919. doi: 10.1021/bi00003a025. [DOI] [PubMed] [Google Scholar]
  25. Stearns D. M., Kennedy L. J., Courtney K. D., Giangrande P. H., Phieffer L. S., Wetterhahn K. E. Reduction of chromium(VI) by ascorbate leads to chromium-DNA binding and DNA strand breaks in vitro. Biochemistry. 1995 Jan 24;34(3):910–919. doi: 10.1021/bi00003a025. [DOI] [PubMed] [Google Scholar]
  26. Sugiyama M., Tsuzuki K., Haramaki N. DNA single-strand breaks and cytotoxicity induced by sodium chromate(VI) in hydrogen peroxide-resistant cell lines. Mutat Res. 1993 Apr;299(2):95–102. doi: 10.1016/0165-1218(93)90086-s. [DOI] [PubMed] [Google Scholar]
  27. da Cruz Fresco P., Shacker F., Kortenkamp A. The reductive conversion of chromium (VI) by ascorbate gives rise to apurinic/apyrimidinic sites in isolated DNA. Chem Res Toxicol. 1995 Sep;8(6):884–890. doi: 10.1021/tx00048a009. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES