Abstract
RNAs that bind to xanthine (2,6-dioxypurine) were isolated from a population of 10(12) random sequences by in vitro selection. These xanthine-binding RNAs were found to have a 10 nt consensus sequence at an internal loop in the most probable secondary structure. By trimming one of the xanthine-binding RNAs, a representative xanthine-binding RNA (designated as XBA) of 32 nt residues was prepared. The dissociation constant of this RNA for xanthine was determined to be 3.3 microM by equilibrium filtration experiments. The XBA RNA can bind to guanine as well, whereas it hardly accommodates adenine, cytosine or uracil. The K d values for various xanthine/guanine analogues were determined, and revealed that the N1H, N7 and O6 moieties of the ligand are involved in the binding with the XBA RNA. The ribonuclease sensitivities of some internal-loop residues changed upon the addition of xanthine, suggesting that the internal loop of the XBA RNA is involved in the ligand binding. Interestingly, the consensus sequence of the xanthine/guanine-binding RNAs is the same as a sequence in one of the internal loops of the hairpin ribozyme, except for a substitution that is neutral with respect to xanthine/guanine binding.
Full Text
The Full Text of this article is available as a PDF (240.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson P., Monforte J., Tritz R., Nesbitt S., Hearst J., Hampel A. Mutagenesis of the hairpin ribozyme. Nucleic Acids Res. 1994 Mar 25;22(6):1096–1100. doi: 10.1093/nar/22.6.1096. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Been M. D., Perrotta A. T. Group I intron self-splicing with adenosine: evidence for a single nucleoside-binding site. Science. 1991 Apr 19;252(5004):434–437. doi: 10.1126/science.2017681. [DOI] [PubMed] [Google Scholar]
- Berzal-Herranz A., Joseph S., Burke J. M. In vitro selection of active hairpin ribozymes by sequential RNA-catalyzed cleavage and ligation reactions. Genes Dev. 1992 Jan;6(1):129–134. doi: 10.1101/gad.6.1.129. [DOI] [PubMed] [Google Scholar]
- Berzal-Herranz A., Joseph S., Chowrira B. M., Butcher S. E., Burke J. M. Essential nucleotide sequences and secondary structure elements of the hairpin ribozyme. EMBO J. 1993 Jun;12(6):2567–2573. doi: 10.1002/j.1460-2075.1993.tb05912.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Butcher S. E., Burke J. M. Structure-mapping of the hairpin ribozyme. Magnesium-dependent folding and evidence for tertiary interactions within the ribozyme-substrate complex. J Mol Biol. 1994 Nov 18;244(1):52–63. doi: 10.1006/jmbi.1994.1703. [DOI] [PubMed] [Google Scholar]
- Butcher S. E., Heckman J. E., Burke J. M. Reconstitution of hairpin ribozyme activity following separation of functional domains. J Biol Chem. 1995 Dec 15;270(50):29648–29651. doi: 10.1074/jbc.270.50.29648. [DOI] [PubMed] [Google Scholar]
- Chowrira B. M., Berzal-Herranz A., Burke J. M. Novel guanosine requirement for catalysis by the hairpin ribozyme. Nature. 1991 Nov 28;354(6351):320–322. doi: 10.1038/354320a0. [DOI] [PubMed] [Google Scholar]
- Connell G. J., Yarus M. RNAs with dual specificity and dual RNAs with similar specificity. Science. 1994 May 20;264(5162):1137–1141. doi: 10.1126/science.7513905. [DOI] [PubMed] [Google Scholar]
- Dieckmann T., Suzuki E., Nakamura G. K., Feigon J. Solution structure of an ATP-binding RNA aptamer reveals a novel fold. RNA. 1996 Jul;2(7):628–640. [PMC free article] [PubMed] [Google Scholar]
- Earnshaw D. J., Masquida B., Müller S., Sigurdsson S. T., Eckstein F., Westhof E., Gait M. J. Inter-domain cross-linking and molecular modelling of the hairpin ribozyme. J Mol Biol. 1997 Nov 28;274(2):197–212. doi: 10.1006/jmbi.1997.1405. [DOI] [PubMed] [Google Scholar]
- Ellington A. D., Szostak J. W. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990 Aug 30;346(6287):818–822. doi: 10.1038/346818a0. [DOI] [PubMed] [Google Scholar]
- Fan P., Suri A. K., Fiala R., Live D., Patel D. J. Molecular recognition in the FMN-RNA aptamer complex. J Mol Biol. 1996 May 10;258(3):480–500. doi: 10.1006/jmbi.1996.0263. [DOI] [PubMed] [Google Scholar]
- Grasby J. A., Mersmann K., Singh M., Gait M. J. Purine functional groups in essential residues of the hairpin ribozyme required for catalytic cleavage of RNA. Biochemistry. 1995 Mar 28;34(12):4068–4076. doi: 10.1021/bi00012a025. [DOI] [PubMed] [Google Scholar]
- Jenison R. D., Gill S. C., Pardi A., Polisky B. High-resolution molecular discrimination by RNA. Science. 1994 Mar 11;263(5152):1425–1429. doi: 10.1126/science.7510417. [DOI] [PubMed] [Google Scholar]
- Jiang F., Kumar R. A., Jones R. A., Patel D. J. Structural basis of RNA folding and recognition in an AMP-RNA aptamer complex. Nature. 1996 Jul 11;382(6587):183–186. doi: 10.1038/382183a0. [DOI] [PubMed] [Google Scholar]
- Jiang L., Suri A. K., Fiala R., Patel D. J. Saccharide-RNA recognition in an aminoglycoside antibiotic-RNA aptamer complex. Chem Biol. 1997 Jan;4(1):35–50. doi: 10.1016/s1074-5521(97)90235-0. [DOI] [PubMed] [Google Scholar]
- Knapp G. Enzymatic approaches to probing of RNA secondary and tertiary structure. Methods Enzymol. 1989;180:192–212. doi: 10.1016/0076-6879(89)80102-8. [DOI] [PubMed] [Google Scholar]
- Komatsu Y., Kanzaki I., Koizumi M., Ohtsuka E. Modification of primary structures of hairpin ribozymes for probing active conformations. J Mol Biol. 1995 Sep 22;252(3):296–304. doi: 10.1006/jmbi.1995.0497. [DOI] [PubMed] [Google Scholar]
- Lowman H. B., Draper D. E. On the recognition of helical RNA by cobra venom V1 nuclease. J Biol Chem. 1986 Apr 25;261(12):5396–5403. [PubMed] [Google Scholar]
- Martin R. L., Renosto F., Segel I. H. A simple method for calculating the dissociation constant of a receptor (or enzyme).unlabeled ligand complex from radioligand displacement measurements. Arch Biochem Biophys. 1991 Jan;284(1):26–29. doi: 10.1016/0003-9861(91)90257-j. [DOI] [PubMed] [Google Scholar]
- Michel F., Hanna M., Green R., Bartel D. P., Szostak J. W. The guanosine binding site of the Tetrahymena ribozyme. Nature. 1989 Nov 23;342(6248):391–395. doi: 10.1038/342391a0. [DOI] [PubMed] [Google Scholar]
- Michel F., Westhof E. Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J Mol Biol. 1990 Dec 5;216(3):585–610. doi: 10.1016/0022-2836(90)90386-Z. [DOI] [PubMed] [Google Scholar]
- Sassanfar M., Szostak J. W. An RNA motif that binds ATP. Nature. 1993 Aug 5;364(6437):550–553. doi: 10.1038/364550a0. [DOI] [PubMed] [Google Scholar]
- Shippy R., Siwkowski A., Hampel A. Mutational analysis of loops 1 and 5 of the hairpin ribozyme. Biochemistry. 1998 Jan 13;37(2):564–570. doi: 10.1021/bi9721288. [DOI] [PubMed] [Google Scholar]
- Siwkowski A., Shippy R., Hampel A. Analysis of hairpin ribozyme base mutations in loops 2 and 4 and their effects on cis-cleavage in vitro. Biochemistry. 1997 Apr 1;36(13):3930–3940. doi: 10.1021/bi9628735. [DOI] [PubMed] [Google Scholar]
- Tuerk C., Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990 Aug 3;249(4968):505–510. doi: 10.1126/science.2200121. [DOI] [PubMed] [Google Scholar]
- Yang Y., Kochoyan M., Burgstaller P., Westhof E., Famulok M. Structural basis of ligand discrimination by two related RNA aptamers resolved by NMR spectroscopy. Science. 1996 May 31;272(5266):1343–1347. doi: 10.1126/science.272.5266.1343. [DOI] [PubMed] [Google Scholar]
- Yarus M., Majerfeld I. Co-optimization of ribozyme substrate stacking and L-arginine binding. J Mol Biol. 1992 Jun 20;225(4):945–949. doi: 10.1016/0022-2836(92)90095-2. [DOI] [PubMed] [Google Scholar]
- Zimmermann G. R., Jenison R. D., Wick C. L., Simorre J. P., Pardi A. Interlocking structural motifs mediate molecular discrimination by a theophylline-binding RNA. Nat Struct Biol. 1997 Aug;4(8):644–649. doi: 10.1038/nsb0897-644. [DOI] [PubMed] [Google Scholar]