Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Apr 15;26(8):1974–1979. doi: 10.1093/nar/26.8.1974

The use of sequence comparison to detect 'identities' in tRNA genes.

J I Sagara 1, S Shimizu 1, T Kawabata 1, S Nakamura 1, M Ikeguchi 1, K Shimizu 1
PMCID: PMC147485  PMID: 9518491

Abstract

We have developed a computational method that detects 'identities' in tRNA genes by using principal component analysis to classify the sequences of bases in tRNA genes into groups of similar sequences and then comparing the distribution of sequences of bases, in order to extract characteristic bases that are conserved within a group but differ between groups. These classification and comparison procedures are applied recursively to classify the sequences into hierarchical groups, so that multiple levels of characteristic sites can be detected. By using this computational method, we were able to detect many characteristic sites in the T and D domains of tRNAs, as well as the characteristic sites that had already been detected experimentally. This suggests that bases not only in the contact regions but also in the elbow regions, which determine the structure and dynamics of the whole tRNA molecule, are important to the tRNA-aminoacyl tRNA synthetase recognition.

Full Text

The Full Text of this article is available as a PDF (447.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atilgan T., Nicholas H. B., Jr, McClain W. H. A statistical method for correlating tRNA sequence with amino acid specificity. Nucleic Acids Res. 1986 Jan 10;14(1):375–380. doi: 10.1093/nar/14.1.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Casari G., Sander C., Valencia A. A method to predict functional residues in proteins. Nat Struct Biol. 1995 Feb;2(2):171–178. doi: 10.1038/nsb0295-171. [DOI] [PubMed] [Google Scholar]
  3. Cavarelli J., Moras D. Recognition of tRNAs by aminoacyl-tRNA synthetases. FASEB J. 1993 Jan;7(1):79–86. doi: 10.1096/fasebj.7.1.8422978. [DOI] [PubMed] [Google Scholar]
  4. Crothers D. M., Seno T., Söll G. Is there a discriminator site in transfer RNA? Proc Natl Acad Sci U S A. 1972 Oct;69(10):3063–3067. doi: 10.1073/pnas.69.10.3063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eriani G., Delarue M., Poch O., Gangloff J., Moras D. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature. 1990 Sep 13;347(6289):203–206. doi: 10.1038/347203a0. [DOI] [PubMed] [Google Scholar]
  6. Hayase Y., Jahn M., Rogers M. J., Sylvers L. A., Koizumi M., Inoue H., Ohtsuka E., Söll D. Recognition of bases in Escherichia coli tRNA(Gln) by glutaminyl-tRNA synthetase: a complete identity set. EMBO J. 1992 Nov;11(11):4159–4165. doi: 10.1002/j.1460-2075.1992.tb05509.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hofmann B., Nishanian P., Nguyen T., Insixiengmay P., Fahey J. L. Human immunodeficiency virus proteins induce the inhibitory cAMP/protein kinase A pathway in normal lymphocytes. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6676–6680. doi: 10.1073/pnas.90.14.6676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hou Y. M. Structural elements that contribute to an unusual tertiary interaction in a transfer RNA. Biochemistry. 1994 Apr 19;33(15):4677–4681. doi: 10.1021/bi00181a603. [DOI] [PubMed] [Google Scholar]
  9. Komatsoulis G. A., Abelson J. Recognition of tRNA(Cys) by Escherichia coli cysteinyl-tRNA synthetase. Biochemistry. 1993 Jul 27;32(29):7435–7444. doi: 10.1021/bi00080a014. [DOI] [PubMed] [Google Scholar]
  10. McClain W. H. Identity of Escherichia coli tRNA(Cys) determined by nucleotides in three regions of tRNA tertiary structure. J Biol Chem. 1993 Sep 15;268(26):19398–19402. [PubMed] [Google Scholar]
  11. McClain W. H., Nicholas H. B., Jr Differences between transfer RNA molecules. J Mol Biol. 1987 Apr 20;194(4):635–642. doi: 10.1016/0022-2836(87)90240-3. [DOI] [PubMed] [Google Scholar]
  12. McClain W. H. Rules that govern tRNA identity in protein synthesis. J Mol Biol. 1993 Nov 20;234(2):257–280. doi: 10.1006/jmbi.1993.1582. [DOI] [PubMed] [Google Scholar]
  13. McClain W. H. Transfer RNA identity. FASEB J. 1993 Jan;7(1):72–78. doi: 10.1096/fasebj.7.1.8422977. [DOI] [PubMed] [Google Scholar]
  14. Moras D. Structural and functional relationships between aminoacyl-tRNA synthetases. Trends Biochem Sci. 1992 Apr;17(4):159–164. doi: 10.1016/0968-0004(92)90326-5. [DOI] [PubMed] [Google Scholar]
  15. Nakamura S., Doi J. Dynamics of transfer RNAs analyzed by normal mode calculation. Nucleic Acids Res. 1994 Feb 11;22(3):514–521. doi: 10.1093/nar/22.3.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nicholas H. B., Jr, Graves S. B. Clustering of transfer RNAs by cell type and amino acid specificity. J Mol Biol. 1983 Dec 5;171(2):111–118. doi: 10.1016/s0022-2836(83)80348-9. [DOI] [PubMed] [Google Scholar]
  17. Pallanck L., Li S., Schulman L. H. The anticodon and discriminator base are major determinants of cysteine tRNA identity in vivo. J Biol Chem. 1992 Apr 15;267(11):7221–7223. [PubMed] [Google Scholar]
  18. Rould M. A., Perona J. J., Söll D., Steitz T. A. Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP at 2.8 A resolution. Science. 1989 Dec 1;246(4934):1135–1142. doi: 10.1126/science.2479982. [DOI] [PubMed] [Google Scholar]
  19. Sprinzl M., Steegborn C., Hübel F., Steinberg S. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 1996 Jan 1;24(1):68–72. doi: 10.1093/nar/24.1.68. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wilcox M., Nirenberg M. Transfer RNA as a cofactor coupling amino acid synthesis with that of protein. Proc Natl Acad Sci U S A. 1968 Sep;61(1):229–236. doi: 10.1073/pnas.61.1.229. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES