Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Apr 15;26(8):2034–2035. doi: 10.1093/nar/26.8.2034

Detection of programmed cell death using fluorescence energy transfer.

X Xu 1, A L Gerard 1, B C Huang 1, D C Anderson 1, D G Payan 1, Y Luo 1
PMCID: PMC147488  PMID: 9518501

Abstract

Fluorescence energy transfer (FRET) can be generated when green fluorescent protein (GFP) and blue fluorescent protein (BFP) are covalently linked together by a short peptide. Cleavage of this linkage by protease completely eliminates FRET effect. Caspase-3 (CPP32) is an important cellular protease activated during programmed cell death. An 18 amino acid peptide containing CPP32 recognition sequence, DEVD, was used to link GFP and BFP together. CPP32 activation can be monitored by FRET assay during the apoptosis process.

Full Text

The Full Text of this article is available as a PDF (117.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chen Z., Naito M., Mashima T., Tsuruo T. Activation of actin-cleavable interleukin 1beta-converting enzyme (ICE) family protease CPP-32 during chemotherapeutic agent-induced apoptosis in ovarian carcinoma cells. Cancer Res. 1996 Nov 15;56(22):5224–5229. [PubMed] [Google Scholar]
  2. Enari M., Talanian R. V., Wong W. W., Nagata S. Sequential activation of ICE-like and CPP32-like proteases during Fas-mediated apoptosis. Nature. 1996 Apr 25;380(6576):723–726. doi: 10.1038/380723a0. [DOI] [PubMed] [Google Scholar]
  3. Heim R., Tsien R. Y. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol. 1996 Feb 1;6(2):178–182. doi: 10.1016/s0960-9822(02)00450-5. [DOI] [PubMed] [Google Scholar]
  4. Martin S. J., Green D. R. Protease activation during apoptosis: death by a thousand cuts? Cell. 1995 Aug 11;82(3):349–352. doi: 10.1016/0092-8674(95)90422-0. [DOI] [PubMed] [Google Scholar]
  5. Misteli T., Spector D. L. Applications of the green fluorescent protein in cell biology and biotechnology. Nat Biotechnol. 1997 Oct;15(10):961–964. doi: 10.1038/nbt1097-961. [DOI] [PubMed] [Google Scholar]
  6. Miyawaki A., Llopis J., Heim R., McCaffery J. M., Adams J. A., Ikura M., Tsien R. Y. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature. 1997 Aug 28;388(6645):882–887. doi: 10.1038/42264. [DOI] [PubMed] [Google Scholar]
  7. Nagata S. Apoptosis by death factor. Cell. 1997 Feb 7;88(3):355–365. doi: 10.1016/s0092-8674(00)81874-7. [DOI] [PubMed] [Google Scholar]
  8. Stanger B. Z., Leder P., Lee T. H., Kim E., Seed B. RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell. 1995 May 19;81(4):513–523. doi: 10.1016/0092-8674(95)90072-1. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES