Abstract
The homing endonuclease PI- Sce I consists of a protein splicing domain (I) and an endonucleolytic domain (II). To characterize the two domains with respect to their contribution to DNA recognition we cloned, purified and characterized the isolated domains. Both domains have no detectable endonucleolytic activity. Domain I binds specifically to the PI- Sce I recognition sequence, whereas domain II displays only weak non-specific DNA binding. In the specific complex with domain I the DNA is bent to a similar extent as observed with the initial complex formed between PI- Sce I and DNA. Our results indicate that protein splicing domain I is also involved in recognition of the DNA substrate.
Full Text
The Full Text of this article is available as a PDF (159.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Belfort M., Roberts R. J. Homing endonucleases: keeping the house in order. Nucleic Acids Res. 1997 Sep 1;25(17):3379–3388. doi: 10.1093/nar/25.17.3379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chong S., Shao Y., Paulus H., Benner J., Perler F. B., Xu M. Q. Protein splicing involving the Saccharomyces cerevisiae VMA intein. The steps in the splicing pathway, side reactions leading to protein cleavage, and establishment of an in vitro splicing system. J Biol Chem. 1996 Sep 6;271(36):22159–22168. doi: 10.1074/jbc.271.36.22159. [DOI] [PubMed] [Google Scholar]
- Chong S., Xu M. Q. Protein splicing of the Saccharomyces cerevisiae VMA intein without the endonuclease motifs. J Biol Chem. 1997 Jun 20;272(25):15587–15590. doi: 10.1074/jbc.272.25.15587. [DOI] [PubMed] [Google Scholar]
- Dalgaard J. Z., Klar A. J., Moser M. J., Holley W. R., Chatterjee A., Mian I. S. Statistical modeling and analysis of the LAGLIDADG family of site-specific endonucleases and identification of an intein that encodes a site-specific endonuclease of the HNH family. Nucleic Acids Res. 1997 Nov 15;25(22):4626–4638. doi: 10.1093/nar/25.22.4626. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dalgaard J. Z., Moser M. J., Hughey R., Mian I. S. Statistical modeling, phylogenetic analysis and structure prediction of a protein splicing domain common to inteins and hedgehog proteins. J Comput Biol. 1997 Summer;4(2):193–214. doi: 10.1089/cmb.1997.4.193. [DOI] [PubMed] [Google Scholar]
- Derbyshire V., Kowalski J. C., Dansereau J. T., Hauer C. R., Belfort M. Two-domain structure of the td intron-encoded endonuclease I-TevI correlates with the two-domain configuration of the homing site. J Mol Biol. 1997 Feb 7;265(5):494–506. doi: 10.1006/jmbi.1996.0754. [DOI] [PubMed] [Google Scholar]
- Derbyshire V., Wood D. W., Wu W., Dansereau J. T., Dalgaard J. Z., Belfort M. Genetic definition of a protein-splicing domain: functional mini-inteins support structure predictions and a model for intein evolution. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11466–11471. doi: 10.1073/pnas.94.21.11466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duan X., Gimble F. S., Quiocho F. A. Crystal structure of PI-SceI, a homing endonuclease with protein splicing activity. Cell. 1997 May 16;89(4):555–564. doi: 10.1016/s0092-8674(00)80237-8. [DOI] [PubMed] [Google Scholar]
- Gimble F. S., Stephens B. W. Substitutions in conserved dodecapeptide motifs that uncouple the DNA binding and DNA cleavage activities of PI-SceI endonuclease. J Biol Chem. 1995 Mar 17;270(11):5849–5856. doi: 10.1074/jbc.270.11.5849. [DOI] [PubMed] [Google Scholar]
- Gimble F. S., Thorner J. Homing of a DNA endonuclease gene by meiotic gene conversion in Saccharomyces cerevisiae. Nature. 1992 May 28;357(6376):301–306. doi: 10.1038/357301a0. [DOI] [PubMed] [Google Scholar]
- Gimble F. S., Thorner J. Purification and characterization of VDE, a site-specific endonuclease from the yeast Saccharomyces cerevisiae. J Biol Chem. 1993 Oct 15;268(29):21844–21853. [PubMed] [Google Scholar]
- Gimble F. S., Wang J. Substrate recognition and induced DNA distortion by the PI-SceI endonuclease, an enzyme generated by protein splicing. J Mol Biol. 1996 Oct 25;263(2):163–180. doi: 10.1006/jmbi.1996.0567. [DOI] [PubMed] [Google Scholar]
- Hall T. M., Porter J. A., Young K. E., Koonin E. V., Beachy P. A., Leahy D. J. Crystal structure of a Hedgehog autoprocessing domain: homology between Hedgehog and self-splicing proteins. Cell. 1997 Oct 3;91(1):85–97. doi: 10.1016/s0092-8674(01)80011-8. [DOI] [PubMed] [Google Scholar]
- Heath P. J., Stephens K. M., Monnat R. J., Jr, Stoddard B. L. The structure of I-Crel, a group I intron-encoded homing endonuclease. Nat Struct Biol. 1997 Jun;4(6):468–476. doi: 10.1038/nsb0697-468. [DOI] [PubMed] [Google Scholar]
- Henke R. M., Butow R. A., Perlman P. S. Maturase and endonuclease functions depend on separate conserved domains of the bifunctional protein encoded by the group I intron aI4 alpha of yeast mitochondrial DNA. EMBO J. 1995 Oct 16;14(20):5094–5099. doi: 10.1002/j.1460-2075.1995.tb00191.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirata R., Ohsumk Y., Nakano A., Kawasaki H., Suzuki K., Anraku Y. Molecular structure of a gene, VMA1, encoding the catalytic subunit of H(+)-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J Biol Chem. 1990 Apr 25;265(12):6726–6733. [PubMed] [Google Scholar]
- Hodges R. A., Perler F. B., Noren C. J., Jack W. E. Protein splicing removes intervening sequences in an archaea DNA polymerase. Nucleic Acids Res. 1992 Dec 11;20(23):6153–6157. doi: 10.1093/nar/20.23.6153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kane P. M., Yamashiro C. T., Wolczyk D. F., Neff N., Goebl M., Stevens T. H. Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H(+)-adenosine triphosphatase. Science. 1990 Nov 2;250(4981):651–657. doi: 10.1126/science.2146742. [DOI] [PubMed] [Google Scholar]
- Kawasaki M., Nogami S., Satow Y., Ohya Y., Anraku Y. Identification of three core regions essential for protein splicing of the yeast Vma1 protozyme. A random mutagenesis study of the entire Vma1-derived endonuclease sequence. J Biol Chem. 1997 Jun 20;272(25):15668–15674. doi: 10.1074/jbc.272.25.15668. [DOI] [PubMed] [Google Scholar]
- Kawasaki M., Satow Y., Ohya Y., Anraku Y. Protein splicing in the yeast Vma1 protozyme: evidence for an intramolecular reaction. FEBS Lett. 1997 Aug 4;412(3):518–520. doi: 10.1016/s0014-5793(97)00850-8. [DOI] [PubMed] [Google Scholar]
- Kim J., Zwieb C., Wu C., Adhya S. Bending of DNA by gene-regulatory proteins: construction and use of a DNA bending vector. Gene. 1989 Dec 21;85(1):15–23. doi: 10.1016/0378-1119(89)90459-9. [DOI] [PubMed] [Google Scholar]
- Klabunde T., Sharma S., Telenti A., Jacobs W. R., Jr, Sacchettini J. C. Crystal structure of GyrA intein from Mycobacterium xenopi reveals structural basis of protein splicing. Nat Struct Biol. 1998 Jan;5(1):31–36. doi: 10.1038/nsb0198-31. [DOI] [PubMed] [Google Scholar]
- Koonin E. V. A protein splice-junction motif in hedgehog family proteins. Trends Biochem Sci. 1995 Apr;20(4):141–142. doi: 10.1016/s0968-0004(00)88989-6. [DOI] [PubMed] [Google Scholar]
- Lambowitz A. M., Belfort M. Introns as mobile genetic elements. Annu Rev Biochem. 1993;62:587–622. doi: 10.1146/annurev.bi.62.070193.003103. [DOI] [PubMed] [Google Scholar]
- Li L., Wu L. P., Chandrasegaran S. Functional domains in Fok I restriction endonuclease. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4275–4279. doi: 10.1073/pnas.89.10.4275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lykke-Andersen J., Garrett R. A., Kjems J. Mapping metal ions at the catalytic centres of two intron-encoded endonucleases. EMBO J. 1997 Jun 2;16(11):3272–3281. doi: 10.1093/emboj/16.11.3272. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lykke-Andersen J., Garrett R. A., Kjems J. Protein footprinting approach to mapping DNA binding sites of two archaeal homing enzymes: evidence for a two-domain protein structure. Nucleic Acids Res. 1996 Oct 15;24(20):3982–3989. doi: 10.1093/nar/24.20.3982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pace C. N., Vajdos F., Fee L., Grimsley G., Gray T. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 1995 Nov;4(11):2411–2423. doi: 10.1002/pro.5560041120. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perler F. B., Davis E. O., Dean G. E., Gimble F. S., Jack W. E., Neff N., Noren C. J., Thorner J., Belfort M. Protein splicing elements: inteins and exteins--a definition of terms and recommended nomenclature. Nucleic Acids Res. 1994 Apr 11;22(7):1125–1127. doi: 10.1093/nar/22.7.1125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pietrokovski S. Modular organization of inteins and C-terminal autocatalytic domains. Protein Sci. 1998 Jan;7(1):64–71. doi: 10.1002/pro.5560070106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rost B., Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol. 1993 Jul 20;232(2):584–599. doi: 10.1006/jmbi.1993.1413. [DOI] [PubMed] [Google Scholar]
- Szczepanek T., Lazowska J. Replacement of two non-adjacent amino acids in the S.cerevisiae bi2 intron-encoded RNA maturase is sufficient to gain a homing-endonuclease activity. EMBO J. 1996 Jul 15;15(14):3758–3767. [PMC free article] [PubMed] [Google Scholar]
- Turmel M., Otis C., Côté V., Lemieux C. Evolutionarily conserved and functionally important residues in the I-CeuI homing endonuclease. Nucleic Acids Res. 1997 Jul 1;25(13):2610–2619. doi: 10.1093/nar/25.13.2610. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wende W., Grindl W., Christ F., Pingoud A., Pingoud V. Binding, bending and cleavage of DNA substrates by the homing endonuclease Pl-SceI. Nucleic Acids Res. 1996 Nov 1;24(21):4123–4132. doi: 10.1093/nar/24.21.4123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu M. Q., Perler F. B. The mechanism of protein splicing and its modulation by mutation. EMBO J. 1996 Oct 1;15(19):5146–5153. [PMC free article] [PubMed] [Google Scholar]