Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Apr 15;26(8):1980–1984. doi: 10.1093/nar/26.8.1980

Mismatched nucleotides may facilitate expansion of trinucleotide repeats in genetic diseases.

M Nakayabu 1, S Miwa 1, M Suzuki 1, S Izuta 1, G Sobue 1, S Yoshida 1
PMCID: PMC147492  PMID: 9518492

Abstract

We have studied the contribution of mismatch sequences to the trinucleotide repeat expansion that causes hereditary diseases. Using an oligonucleotide duplex, (CAG)5/(CTG)5, as a template-primer, DNA synthesis was carried out using either Escherichia coli DNA polymerase I (Klenow fragment) or human immunodeficiency virus type I reverse transcriptase (HIV-RT). Both enzymes expanded the repeat sequence longer than 27 nucleotides (nt), beyond the maximum length expected from the template size. The expansion was observed under conditions in which extension occurs either in both strands or in one strand. In contrast, with another template-primer that contains a non-repetitive flanking sequence 5'-upstream of the repetitive sequence, the reaction products were not extended beyond the template size (45 nt) by these DNA polymerases. We then used mismatched template-primers, in which either 1, 2 or 6 non-complementary nucleotides were introduced to the repeat sequence that is flanked by a non-repetitive sequence. In this case, primers were efficiently expanded over the expected length of 45 nt, in a mismatch-dependent manner. One of the primers with six mismatches extended as long as 72 nt. These results imply that the misincorporation of non-complementary deoxyribonucleoside monophosphates (dNMPs) into the repeat sequence makes double-stranded DNA unstable and triggers the slippage and expansion of trinucleotide repeats by forming loops or hairpin structures during DNA synthesis.

Full Text

The Full Text of this article is available as a PDF (126.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashley C. T., Jr, Warren S. T. Trinucleotide repeat expansion and human disease. Annu Rev Genet. 1995;29:703–728. doi: 10.1146/annurev.ge.29.120195.003415. [DOI] [PubMed] [Google Scholar]
  2. Bebenek K., Abbotts J., Roberts J. D., Wilson S. H., Kunkel T. A. Specificity and mechanism of error-prone replication by human immunodeficiency virus-1 reverse transcriptase. J Biol Chem. 1989 Oct 5;264(28):16948–16956. [PubMed] [Google Scholar]
  3. Behn-Krappa A., Doerfler W. Enzymatic amplification of synthetic oligodeoxyribonucleotides: implications for triplet repeat expansions in the human genome. Hum Mutat. 1994;3(1):19–24. doi: 10.1002/humu.1380030104. [DOI] [PubMed] [Google Scholar]
  4. Campuzano V., Montermini L., Moltò M. D., Pianese L., Cossée M., Cavalcanti F., Monros E., Rodius F., Duclos F., Monticelli A. Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science. 1996 Mar 8;271(5254):1423–1427. doi: 10.1126/science.271.5254.1423. [DOI] [PubMed] [Google Scholar]
  5. Chong S. S., Almqvist E., Telenius H., LaTray L., Nichol K., Bourdelat-Parks B., Goldberg Y. P., Haddad B. R., Richards F., Sillence D. Contribution of DNA sequence and CAG size to mutation frequencies of intermediate alleles for Huntington disease: evidence from single sperm analyses. Hum Mol Genet. 1997 Feb;6(2):301–309. doi: 10.1093/hmg/6.2.301. [DOI] [PubMed] [Google Scholar]
  6. Chong S. S., McCall A. E., Cota J., Subramony S. H., Orr H. T., Hughes M. R., Zoghbi H. Y. Gametic and somatic tissue-specific heterogeneity of the expanded SCA1 CAG repeat in spinocerebellar ataxia type 1. Nat Genet. 1995 Jul;10(3):344–350. doi: 10.1038/ng0795-344. [DOI] [PubMed] [Google Scholar]
  7. Chung M. Y., Ranum L. P., Duvick L. A., Servadio A., Zoghbi H. Y., Orr H. T. Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type I. Nat Genet. 1993 Nov;5(3):254–258. doi: 10.1038/ng1193-254. [DOI] [PubMed] [Google Scholar]
  8. David G., Abbas N., Stevanin G., Dürr A., Yvert G., Cancel G., Weber C., Imbert G., Saudou F., Antoniou E. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet. 1997 Sep;17(1):65–70. doi: 10.1038/ng0997-65. [DOI] [PubMed] [Google Scholar]
  9. Eichler E. E., Holden J. J., Popovich B. W., Reiss A. L., Snow K., Thibodeau S. N., Richards C. S., Ward P. A., Nelson D. L. Length of uninterrupted CGG repeats determines instability in the FMR1 gene. Nat Genet. 1994 Sep;8(1):88–94. doi: 10.1038/ng0994-88. [DOI] [PubMed] [Google Scholar]
  10. Fry M., Loeb L. A. A DNA polymerase alpha pause site is a hot spot for nucleotide misinsertion. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):763–767. doi: 10.1073/pnas.89.2.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gacy A. M., Goellner G., Juranić N., Macura S., McMurray C. T. Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell. 1995 May 19;81(4):533–540. doi: 10.1016/0092-8674(95)90074-8. [DOI] [PubMed] [Google Scholar]
  12. Hopfield J. J. The energy relay: a proofreading scheme based on dynamic cooperativity and lacking all characteristic symptoms of kinetic proofreading in DNA replication and protein synthesis. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5248–5252. doi: 10.1073/pnas.77.9.5248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Imbert G., Saudou F., Yvert G., Devys D., Trottier Y., Garnier J. M., Weber C., Mandel J. L., Cancel G., Abbas N. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet. 1996 Nov;14(3):285–291. doi: 10.1038/ng1196-285. [DOI] [PubMed] [Google Scholar]
  14. Izuta S., Roberts J. D., Kunkel T. A. Replication error rates for G.dGTP, T.dGTP, and A.dGTP mispairs and evidence for differential proofreading by leading and lagging strand DNA replication complexes in human cells. J Biol Chem. 1995 Feb 10;270(6):2595–2600. doi: 10.1074/jbc.270.6.2595. [DOI] [PubMed] [Google Scholar]
  15. Jaworski A., Rosche W. A., Gellibolian R., Kang S., Shimizu M., Bowater R. P., Sinden R. R., Wells R. D. Mismatch repair in Escherichia coli enhances instability of (CTG)n triplet repeats from human hereditary diseases. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):11019–11023. doi: 10.1073/pnas.92.24.11019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jeffreys A. J., MacLeod A., Tamaki K., Neil D. L., Monckton D. G. Minisatellite repeat coding as a digital approach to DNA typing. Nature. 1991 Nov 21;354(6350):204–209. doi: 10.1038/354204a0. [DOI] [PubMed] [Google Scholar]
  17. Ji J., Clegg N. J., Peterson K. R., Jackson A. L., Laird C. D., Loeb L. A. In vitro expansion of GGC:GCC repeats: identification of the preferred strand of expansion. Nucleic Acids Res. 1996 Jul 15;24(14):2835–2840. doi: 10.1093/nar/24.14.2835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kang S., Jaworski A., Ohshima K., Wells R. D. Expansion and deletion of CTG repeats from human disease genes are determined by the direction of replication in E. coli. Nat Genet. 1995 Jun;10(2):213–218. doi: 10.1038/ng0695-213. [DOI] [PubMed] [Google Scholar]
  19. La Spada A. R., Roling D. B., Harding A. E., Warner C. L., Spiegel R., Hausmanowa-Petrusewicz I., Yee W. C., Fischbeck K. H. Meiotic stability and genotype-phenotype correlation of the trinucleotide repeat in X-linked spinal and bulbar muscular atrophy. Nat Genet. 1992 Dec;2(4):301–304. doi: 10.1038/ng1292-301. [DOI] [PubMed] [Google Scholar]
  20. Mariappan S. V., Garcoa A. E., Gupta G. Structure and dynamics of the DNA hairpins formed by tandemly repeated CTG triplets associated with myotonic dystrophy. Nucleic Acids Res. 1996 Feb 15;24(4):775–783. doi: 10.1093/nar/24.4.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pulst S. M., Nechiporuk A., Nechiporuk T., Gispert S., Chen X. N., Lopes-Cendes I., Pearlman S., Starkman S., Orozco-Diaz G., Lunkes A. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet. 1996 Nov;14(3):269–276. doi: 10.1038/ng1196-269. [DOI] [PubMed] [Google Scholar]
  22. Richards R. I., Sutherland G. R. Simple repeat DNA is not replicated simply. Nat Genet. 1994 Feb;6(2):114–116. doi: 10.1038/ng0294-114. [DOI] [PubMed] [Google Scholar]
  23. Sanpei K., Takano H., Igarashi S., Sato T., Oyake M., Sasaki H., Wakisaka A., Tashiro K., Ishida Y., Ikeuchi T. Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nat Genet. 1996 Nov;14(3):277–284. doi: 10.1038/ng1196-277. [DOI] [PubMed] [Google Scholar]
  24. Schlötterer C., Tautz D. Slippage synthesis of simple sequence DNA. Nucleic Acids Res. 1992 Jan 25;20(2):211–215. doi: 10.1093/nar/20.2.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Strand M., Prolla T. A., Liskay R. M., Petes T. D. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature. 1993 Sep 16;365(6443):274–276. doi: 10.1038/365274a0. [DOI] [PubMed] [Google Scholar]
  26. Suzuki M., Izuta S., Yoshida S. DNA polymerase alpha overcomes an error-prone pause site in the presence of replication protein-A. J Biol Chem. 1994 Apr 8;269(14):10225–10228. [PubMed] [Google Scholar]
  27. Tilley W. D., Marcelli M., Wilson J. D., McPhaul M. J. Characterization and expression of a cDNA encoding the human androgen receptor. Proc Natl Acad Sci U S A. 1989 Jan;86(1):327–331. doi: 10.1073/pnas.86.1.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Trinh T. Q., Sinden R. R. Preferential DNA secondary structure mutagenesis in the lagging strand of replication in E. coli. Nature. 1991 Aug 8;352(6335):544–547. doi: 10.1038/352544a0. [DOI] [PubMed] [Google Scholar]
  29. Umar A., Boyer J. C., Kunkel T. A. DNA loop repair by human cell extracts. Science. 1994 Nov 4;266(5186):814–816. doi: 10.1126/science.7973637. [DOI] [PubMed] [Google Scholar]
  30. Zhuchenko O., Bailey J., Bonnen P., Ashizawa T., Stockton D. W., Amos C., Dobyns W. B., Subramony S. H., Zoghbi H. Y., Lee C. C. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet. 1997 Jan;15(1):62–69. doi: 10.1038/ng0197-62. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES