Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Apr 15;26(8):1939–1946. doi: 10.1093/nar/26.8.1939

Essential dynamics of DNA containing a cis.syn cyclobutane thymine dimer lesion.

H Yamaguchi 1, D M van Aalten 1, M Pinak 1, A Furukawa 1, R Osman 1
PMCID: PMC147494  PMID: 9518486

Abstract

Conformational properties of a UV-damaged DNA decamer containing a cis.syn cyclobutane thymine dimer (PD) have been investigated by molecular dynamics (MD) simulations. Results from MD simulations of the damaged decamer DNA show a kink of approximately 21.7 degrees at the PD damaged site and a disruption of H bonding between the 5'-thymine of the PD and its complementary adenine. However, no extra-helical flipping of the 3'-adenine complementary to the PD was observed. Comparison to two undamaged DNA decamers, one with the same sequence and the other with an AT replacing the TT sequence, indicates that these properties are specific to the damaged DNA. Essential dynamics (ED) derived from the MD trajectories of the three DNAs show that the backbone phosphate between the two adenines complementary to the PD of the damaged DNA has considerably larger mobility than the rest of the molecule and occurs only in the damaged DNA. As observed in the crystal structure of T4 endonuclease V in a complex with the damaged DNA, the interaction of the enzyme with the damaged DNA can lead to bending along the flexible joint and to induction of adenine flipping into an extra-helical position. Such motions may play an important role in damage recognition by repair enzymes.

Full Text

The Full Text of this article is available as a PDF (224.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amadei A., Linssen A. B., Berendsen H. J. Essential dynamics of proteins. Proteins. 1993 Dec;17(4):412–425. doi: 10.1002/prot.340170408. [DOI] [PubMed] [Google Scholar]
  2. Amadei A., Linssen A. B., de Groot B. L., van Aalten D. M., Berendsen H. J. An efficient method for sampling the essential subspace of proteins. J Biomol Struct Dyn. 1996 Feb;13(4):615–625. doi: 10.1080/07391102.1996.10508874. [DOI] [PubMed] [Google Scholar]
  3. Cooney M. G., Miller J. H. Calculated distortions of duplex DNA by a cis, syn cyclobutane thymine dimer are unaffected by a 3' TpA step. Nucleic Acids Res. 1997 Apr 1;25(7):1432–1436. doi: 10.1093/nar/25.7.1432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dodson M. L., Schrock R. D., 3rd, Lloyd R. S. Evidence for an imino intermediate in the T4 endonuclease V reaction. Biochemistry. 1993 Aug 17;32(32):8284–8290. doi: 10.1021/bi00083a032. [DOI] [PubMed] [Google Scholar]
  5. Doi T., Recktenwald A., Karaki Y., Kikuchi M., Morikawa K., Ikehara M., Inaoka T., Hori N., Ohtsuka E. Role of the basic amino acid cluster and Glu-23 in pyrimidine dimer glycosylase activity of T4 endonuclease V. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9420–9424. doi: 10.1073/pnas.89.20.9420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dowd D. R., Lloyd R. S. Site-directed mutagenesis of the T4 endonuclease V gene: the role of arginine-3 in the target search. Biochemistry. 1989 Oct 31;28(22):8699–8705. doi: 10.1021/bi00448a005. [DOI] [PubMed] [Google Scholar]
  7. Gruskin E. A., Lloyd R. S. The DNA scanning mechanism of T4 endonuclease V. Effect of NaCl concentration on processive nicking activity. J Biol Chem. 1986 Jul 25;261(21):9607–9613. [PubMed] [Google Scholar]
  8. Iwai S., Maeda M., Shimada Y., Hori N., Murata T., Morioka H., Ohtsuka E. Endonuclease V from bacteriophage T4 interacts with its substrate in the minor groove. Biochemistry. 1994 May 10;33(18):5581–5588. doi: 10.1021/bi00184a029. [DOI] [PubMed] [Google Scholar]
  9. Kemmink J., Boelens R., Koning T. M., Kaptein R., van der Marel G. A., van Boom J. H. Conformational changes in the oligonucleotide duplex d(GCGTTGCG) x d(CGCAACGC) induced by formation of a cis-syn thymine dimer. A two-dimensional NMR study. Eur J Biochem. 1987 Jan 2;162(1):37–43. doi: 10.1111/j.1432-1033.1987.tb10538.x. [DOI] [PubMed] [Google Scholar]
  10. Kim J., Linn S. The mechanisms of action of E. coli endonuclease III and T4 UV endonuclease (endonuclease V) at AP sites. Nucleic Acids Res. 1988 Feb 11;16(3):1135–1141. doi: 10.1093/nar/16.3.1135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Latham K. A., Carmical J. R., Lloyd R. S. Mutation of tryptophan 128 in T4 endonuclease V does not affect glycosylase or abasic site lyase activity. Biochemistry. 1994 Aug 2;33(30):9024–9031. doi: 10.1021/bi00196a021. [DOI] [PubMed] [Google Scholar]
  12. Lee B. J., Sakashita H., Ohkubo T., Ikehara M., Doi T., Morikawa K., Kyogoku Y., Osafune T., Iwai S., Ohtsuka E. Nuclear magnetic resonance study of the interaction of T4 endonuclease V with DNA. Biochemistry. 1994 Jan 11;33(1):57–64. doi: 10.1021/bi00167a008. [DOI] [PubMed] [Google Scholar]
  13. McCullough A. K., Dodson M. L., Schärer O. D., Lloyd R. S. The role of base flipping in damage recognition and catalysis by T4 endonuclease V. J Biol Chem. 1997 Oct 24;272(43):27210–27217. doi: 10.1074/jbc.272.43.27210. [DOI] [PubMed] [Google Scholar]
  14. Morikawa K., Ariyoshi M., Vassylyev D. G., Matsumoto O., Katayanagi K., Ohtsuka E. Crystal structure of a pyrimidine dimer-specific excision repair enzyme from bacteriophage T4: refinement at 1.45 A and X-ray analysis of the three active site mutants. J Mol Biol. 1995 Jun 2;249(2):360–375. doi: 10.1006/jmbi.1995.0302. [DOI] [PubMed] [Google Scholar]
  15. Morikawa K., Ariyoshi M., Vassylyev D., Katayanagi K., Nakamura H., Doi T., Hori N., Ohtsuka E. Crystal structure of T4 endonuclease V. An excision repair enzyme for a pyrimidine dimer. Ann N Y Acad Sci. 1994 Jul 29;726:198–207. doi: 10.1111/j.1749-6632.1994.tb52815.x. [DOI] [PubMed] [Google Scholar]
  16. Morikawa K., Matsumoto O., Tsujimoto M., Katayanagi K., Ariyoshi M., Doi T., Ikehara M., Inaoka T., Ohtsuka E. X-ray structure of T4 endonuclease V: an excision repair enzyme specific for a pyrimidine dimer. Science. 1992 Apr 24;256(5056):523–526. doi: 10.1126/science.1575827. [DOI] [PubMed] [Google Scholar]
  17. Nyaga S. G., Dodson M. L., Lloyd R. S. Role of specific amino acid residues in T4 endonuclease V that alter nontarget DNA binding. Biochemistry. 1997 Apr 8;36(14):4080–4088. doi: 10.1021/bi962218x. [DOI] [PubMed] [Google Scholar]
  18. Ramstein J., Lavery R. Energetic coupling between DNA bending and base pair opening. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7231–7235. doi: 10.1073/pnas.85.19.7231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Recinos A., 3rd, Lloyd R. S. Site-directed mutagenesis of the T4 endonuclease V gene: role of lysine-130. Biochemistry. 1988 Mar 22;27(6):1832–1838. doi: 10.1021/bi00406a006. [DOI] [PubMed] [Google Scholar]
  20. Stump D. G., Lloyd R. S. Site-directed mutagenesis of the T4 endonuclease V gene: role of tyrosine-129 and -131 in pyrimidine dimer-specific binding. Biochemistry. 1988 Mar 22;27(6):1839–1843. doi: 10.1021/bi00406a007. [DOI] [PubMed] [Google Scholar]
  21. Vassylyev D. G., Kashiwagi T., Mikami Y., Ariyoshi M., Iwai S., Ohtsuka E., Morikawa K. Atomic model of a pyrimidine dimer excision repair enzyme complexed with a DNA substrate: structural basis for damaged DNA recognition. Cell. 1995 Dec 1;83(5):773–782. doi: 10.1016/0092-8674(95)90190-6. [DOI] [PubMed] [Google Scholar]
  22. Vriend G. WHAT IF: a molecular modeling and drug design program. J Mol Graph. 1990 Mar;8(1):52-6, 29. doi: 10.1016/0263-7855(90)80070-v. [DOI] [PubMed] [Google Scholar]
  23. Yasuda S., Sekiguchi M. T4 endonuclease involved in repair of DNA. Proc Natl Acad Sci U S A. 1970 Dec;67(4):1839–1845. doi: 10.1073/pnas.67.4.1839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. de Groot B. L., van Aalten D. M., Amadei A., Berendsen H. J. The consistency of large concerted motions in proteins in molecular dynamics simulations. Biophys J. 1996 Oct;71(4):1707–1713. doi: 10.1016/S0006-3495(96)79372-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. van Aalten D. M., Findlay J. B., Amadei A., Berendsen H. J. Essential dynamics of the cellular retinol-binding protein--evidence for ligand-induced conformational changes. Protein Eng. 1995 Nov;8(11):1129–1135. doi: 10.1093/protein/8.11.1129. [DOI] [PubMed] [Google Scholar]
  26. van Aalten D. M., de Groot B. L., Berendsen H. J., Findlay J. B. Conformational analysis of retinoids and restriction of their dynamics by retinoid-binding proteins. Biochem J. 1996 Oct 15;319(Pt 2):543–550. doi: 10.1042/bj3190543. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES