Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1974 Aug;8:157–164. doi: 10.1289/ehp.748157

Biochemical Parameters of Guinea Pig Perilymph Sampled According to Scala and Following Sound Presentation

Leon L Gershbein, Dennis T Manshio, Phil S Shurrager
PMCID: PMC1474943  PMID: 4470918

Abstract

Guinea pigs were exposed to sound varying from 2 to 8 kHz in frequency and 80-100 dB (SPL) in intensity for periods of 1 hr. The biochemical parameters, glucose, sodium, total protein, and the glycolytic enzymes, aldolase, phosphohexose isomerase, and total LDH as well as isozymes of the latter were ascertained for blood serum, perilymph, and, in some instances, cerebrospinal fluid. The three enzymes occurred at lower levels in perilymph as compared to blood serum. Except for a small difference in serum total protein, sound presentation incurred no significant effect on any of the above parameters. Definite differences in several metabolites were discerned for perilymph sampled according to scala and which were independent of the respective acoustical treatments. Thus, as compared to the scale tympani, the scala vestibuli perilymph displayed a higher glucose content and a diminished total LDH level and of the latter isozymes, LDH1 ranged lower and LDH2, higher. As further evidence pointing to cerebrospinal fluid as the possible origin of perilymph, similarities in glucose contents and LDH isozyme patterns were noted for both fluids.

Full text

PDF
157

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALTMANN F., WALTNER J. G. Further investigations on the physiology of the labyrinthine fluids. Ann Otol Rhinol Laryngol. 1950 Sep;59(3):657–686. doi: 10.1177/000348945005900308. [DOI] [PubMed] [Google Scholar]
  2. ALTMANN F., WALTNER J. G. New investigations on the physiology of the labyrinthine fluids. Laryngoscope. 1950 Aug;60(8):727–739. doi: 10.1288/00005537-195008000-00001. [DOI] [PubMed] [Google Scholar]
  3. BECK C. PROTEIN AND RIBONUCLEIC ACID METABOLISM IN THE COCHLEA. Arch Otolaryngol. 1965 Jun;81:548–552. doi: 10.1001/archotol.1965.00750050563004. [DOI] [PubMed] [Google Scholar]
  4. BLOSTEIN R., RUTTER W. J. COMPARATIVE STUDIES OF LIVER AND MUSCLE ALDOLASE. II. IMMUNOCHEMICAL AND CHROMATOGRAPHIC DIFFERENTIATION. J Biol Chem. 1963 Oct;238:3280–3285. [PubMed] [Google Scholar]
  5. BUEDING E., MACKINNON J. A. Studies of the phosphoglucose isomerase of Schistosoma mansoni. J Biol Chem. 1955 Aug;215(2):507–513. [PubMed] [Google Scholar]
  6. CHEVANCE L. G., GALLI A., JEANMAIRE J., VALETTE F. Occurrence of the C. reactive protein in the perilymphatic fluid; a second note on the neurovegetative stimulation of the cochlea. Acta Otolaryngol. 1959 Jan-Feb;50(1):37–41. doi: 10.3109/00016485909129151. [DOI] [PubMed] [Google Scholar]
  7. DODDS E. C. Biochemistry of endolymph, perilymph and cerebrospinal fluid. J Laryngol Otol. 1953 Aug;67(8):466–473. doi: 10.1017/s0022215100048921. [DOI] [PubMed] [Google Scholar]
  8. Dietz A. A., Lubrano T. Separation and quantitation of lactic dehydrogenase isoenzymes by disc electrophoresis. Anal Biochem. 1967 Aug;20(2):246–257. doi: 10.1016/0003-2697(67)90030-9. [DOI] [PubMed] [Google Scholar]
  9. ELDREDGE D. H. Clinical implications of recent research on the inner ear. Laryngoscope. 1960 Apr;70:373–381. doi: 10.1288/00005537-196004000-00003. [DOI] [PubMed] [Google Scholar]
  10. Fernández C. Biochemistry of labyrinthine fluids. Inorganic substances. Arch Otolaryngol. 1967 Aug;86(2):222–233. [PubMed] [Google Scholar]
  11. JOHNSTONE B. M. THE RELATION BETWEEN ENDOLYMPH AND THE ENDOCOCHLEAR POTENTIAL DURING ANOXIA. Acta Otolaryngol. 1965 Jul-Aug;60:113–120. doi: 10.3109/00016486509126994. [DOI] [PubMed] [Google Scholar]
  12. Kluyskens P., Verstraete W. Isoenzymes of lactic dehydrogenase of the perilymph and the endolymph. Acta Otolaryngol. 1969 Feb-Mar;67(2):206–210. doi: 10.3109/00016486909125444. [DOI] [PubMed] [Google Scholar]
  13. Komaki Y. Glucose transport in the inner ear. Arch Klin Exp Ohren Nasen Kehlkopfheilkd. 1972;201(3):258–269. doi: 10.1007/BF00398009. [DOI] [PubMed] [Google Scholar]
  14. Komarovich G. M., Pluzhnikov M. S. Deistvie intensivnogo zvukovogo razdrazheniia na belkovyi sostav perilimfy vnutrennego ukha koshki. Vestn Otorinolaringol. 1966 Sep-Oct;28(5):72–77. [PubMed] [Google Scholar]
  15. Konishi T., Kelsey E., Singleton G. T. Effects of chemical alteration in the endolymph on the cochlear potentials. Acta Otolaryngol. 1966 Oct-Nov;62(4):393–404. doi: 10.3109/00016486609119584. [DOI] [PubMed] [Google Scholar]
  16. Lawler H. C., Waltner J. G., Basek M. Studies on the protein in cat's perilymph and the effect of ultrasound on the protein. Acta Otolaryngol. 1967 Nov-Dec;64(5):449–463. doi: 10.3109/00016486709139131. [DOI] [PubMed] [Google Scholar]
  17. Lotz P., Kuhl K. D. Die Lactatdehydrogenase des Innenohres. Arch Klin Exp Ohren Nasen Kehlkopfheilkd. 1968;192(2):237–248. [PubMed] [Google Scholar]
  18. Makimoto K., Takeda T., Ibusuki T., Morimoto M. Mucopolysaccharide in perilymph. Ann Otol Rhinol Laryngol. 1967 Oct;76(4):885–894. doi: 10.1177/000348946707600417. [DOI] [PubMed] [Google Scholar]
  19. Mendelsohn M., Roderique J. Cationic changes in endolymph during hypoglycemia. Laryngoscope. 1972 Aug;82(8):1533–1540. doi: 10.1288/00005537-197208000-00016. [DOI] [PubMed] [Google Scholar]
  20. Nakashima T., Meiring N. L., Snow J. B., Jr Cations in the endolymph of the guinea pig with noise-induced deafness. Surg Forum. 1970;21:489–491. [PubMed] [Google Scholar]
  21. Nakashima T., Meiring N. L., Snow J. B., Jr Cations in the endolymph with noise-induced deafness. Arch Otolaryngol. 1971 Aug;94(2):109–113. doi: 10.1001/archotol.1971.00770070345004. [DOI] [PubMed] [Google Scholar]
  22. Palva T., Raunio V. Disc electrophoretic studies of human perilymph and endolymph. Acta Otolaryngol. 1967 Feb-Mar;63(2):128–137. doi: 10.3109/00016486709128739. [DOI] [PubMed] [Google Scholar]
  23. Palva T., Raunio V. Lactate dehydrogenase isoenzymes of post-mortem cochlear fluids. Ann Clin Res. 1969 Sep;1(2):109–113. [PubMed] [Google Scholar]
  24. Palva T., Raunio V. The origin of perilymph albumin. Acta Otolaryngol. 1968 Jul-Aug;66(1):136–144. doi: 10.3109/00016486809126281. [DOI] [PubMed] [Google Scholar]
  25. RAUCH S. [Electrolyte content of endo- and perilymph in a single turn of the scala of the cochlea of guinea pigs with and without stimulation]. Experientia. 1960 Nov 15;16:499–500. doi: 10.1007/BF02158360. [DOI] [PubMed] [Google Scholar]
  26. Rodgers K., Chou J. T. Concentrations of inorganic ions in guinea-pigs inner ear fluids. 3. Phosphate content of utricular endolymph and perilymph. J Laryngol Otol. 1966 Sep;80(9):890–893. [PubMed] [Google Scholar]
  27. SLEIN M. W., CORI G. T., CORI C. F. A comparative study of hexokinase from yeast and animal tissues. J Biol Chem. 1950 Oct;186(2):763–780. [PubMed] [Google Scholar]
  28. Scheibe F., Berndt H., Gerhardt H. J., Haupt H. Immunelektrophoretische untersuchung zur Eiweissverteilung in der Meerschweinchen-Perilymphe nach Schallbelastung. Acta Otolaryngol. 1972 Nov;74(5):317–323. [PubMed] [Google Scholar]
  29. Silverstein H. Biochemical studies of the inner ear fluids in the cat. Preliminary report. Ann Otol Rhinol Laryngol. 1966 Mar;75(1):48–63. doi: 10.1177/000348946607500103. [DOI] [PubMed] [Google Scholar]
  30. Suga F., Nakashima T., Snow J. B., Jr In vivo measurements of Na+ and K+ in cochlear endolymph of the guinea pig. Life Sci. 1970 Feb 8;9(3):163–168. doi: 10.1016/0024-3205(70)90309-7. [DOI] [PubMed] [Google Scholar]
  31. WADDELL W. J. A simple ultraviolet spectrophotometric method for the determination of protein. J Lab Clin Med. 1956 Aug;48(2):311–314. [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES