Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Apr 15;26(8):2024–2030. doi: 10.1093/nar/26.8.2024

Cr(III)-mediated crosslinks of glutathione or amino acids to the DNA phosphate backbone are mutagenic in human cells.

V Voitkun 1, A Zhitkovich 1, M Costa 1
PMCID: PMC147496  PMID: 9518499

Abstract

Carcinogenic Cr(VI) compounds were previously found to induce amino acid/glutathione-Cr(III)-DNA crosslinks with the site of adduction on the phosphate backbone. Utilizing the pSP189 shuttle vector plasmid we found that these ternary DNA adducts were mutagenic in human fibroblasts. The Cr(III)-glutathione adduct was the most potent in this assay, followed by Cr(III)-His and Cr(III)-Cys adducts. Binary Cr(III)-DNA complexes were only weakly mutagenic, inducing a significant response only at a 10 times higher number of adducts compared with Cr(III)-glutathione. Single base substitutions at the G:C base pairs were the predominant type of mutations for all Cr(III) adducts. Cr(III), Cr(III)-Cys and Cr(III)-His adducts induced G:C-->A:T transitions and G:C-->T:A transversions with almost equal frequency, whereas the Cr(III)-glutathione mutational spectrum was dominated by G:C-->T:A transversions. Adduct-induced mutations were targeted toward G:C base pairs with either A or G in the 3' position to the mutated G, while spontaneous mutations occurred mostly at G:C base pairs with a 3' A. No correlation was found between the sites of DNA adduction and positions of base substitution, as adducts were formed randomly on DNA with no base specificity. The observed mutagenicity of Cr(III)-induced phosphotriesters demonstrates the importance of a Cr(III)-dependent pathway in Cr(VI) carcinogenicity.

Full Text

The Full Text of this article is available as a PDF (133.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiyar J., Berkovits H. J., Floyd R. A., Wetterhahn K. E. Reaction of chromium (VI) with hydrogen peroxide in the presence of glutathione: reactive intermediates and resulting DNA damage. Chem Res Toxicol. 1990 Nov-Dec;3(6):595–603. doi: 10.1021/tx00018a016. [DOI] [PubMed] [Google Scholar]
  2. Ariza R. R., Roldán-Arjona T., Hera C., Pueyo C. A method for selection of forward mutations in supF gene carried by shuttle-vector plasmids. Carcinogenesis. 1993 Feb;14(2):303–305. doi: 10.1093/carcin/14.2.303. [DOI] [PubMed] [Google Scholar]
  3. Beranek D. T. Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents. Mutat Res. 1990 Jul;231(1):11–30. doi: 10.1016/0027-5107(90)90173-2. [DOI] [PubMed] [Google Scholar]
  4. Biedermann K. A., Landolph J. R. Role of valence state and solubility of chromium compounds on induction of cytotoxicity, mutagenesis, and anchorage independence in diploid human fibroblasts. Cancer Res. 1990 Dec 15;50(24):7835–7842. [PubMed] [Google Scholar]
  5. Cabral Neto J. B., Cabral R. E., Margot A., Le Page F., Sarasin A., Gentil A. Coding properties of a unique apurinic/apyrimidinic site replicated in mammalian cells. J Mol Biol. 1994 Jul 29;240(5):416–420. doi: 10.1006/jmbi.1994.1457. [DOI] [PubMed] [Google Scholar]
  6. Cariello N. F., Piegorsch W. W., Adams W. T., Skopek T. R. Computer program for the analysis of mutational spectra: application to p53 mutations. Carcinogenesis. 1994 Oct;15(10):2281–2285. doi: 10.1093/carcin/15.10.2281. [DOI] [PubMed] [Google Scholar]
  7. Casadevall M., Kortenkamp A. The formation of both apurinic/apyrimidinic sites and single-strand breaks by chromate and glutathione arises from attack by the same single reactive species and is dependent on molecular oxygen. Carcinogenesis. 1995 Apr;16(4):805–809. doi: 10.1093/carcin/16.4.805. [DOI] [PubMed] [Google Scholar]
  8. Chen J., Thilly W. G. Mutational spectrum of chromium(VI) in human cells. Mutat Res. 1994 Jan-Feb;323(1-2):21–27. doi: 10.1016/0165-7992(94)90040-x. [DOI] [PubMed] [Google Scholar]
  9. Costa M. Analysis of DNA-protein complexes induced by chemical carcinogens. J Cell Biochem. 1990 Nov;44(3):127–135. doi: 10.1002/jcb.240440302. [DOI] [PubMed] [Google Scholar]
  10. Dar M. E., Jorgensen T. J. Deletions at short direct repeats and base substitutions are characteristic mutations for bleomycin-induced double- and single-strand breaks, respectively, in a human shuttle vector system. Nucleic Acids Res. 1995 Aug 25;23(16):3224–3230. doi: 10.1093/nar/23.16.3224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. De Flora S., Bagnasco M., Serra D., Zanacchi P. Genotoxicity of chromium compounds. A review. Mutat Res. 1990 Mar;238(2):99–172. doi: 10.1016/0165-1110(90)90007-x. [DOI] [PubMed] [Google Scholar]
  12. Dillon C. T., Lay P. A., Cholewa M., Legge G. J., Bonin A. M., Collins T. J., Kostka K. L., Shea-McCarthy G. Microprobe X-ray absorption spectroscopic determination of the oxidation state of intracellular chromium following exposure of V79 Chinese hamster lung cells to genotoxic chromium complexes. Chem Res Toxicol. 1997 May;10(5):533–535. doi: 10.1021/tx970010m. [DOI] [PubMed] [Google Scholar]
  13. Fronza G., Madzak C., Campomenosi P., Inga A., Iannone R., Abbondandolo A., Sarasin A. Mutation spectrum of 4-nitroquinoline 1-oxide-damaged single-stranded shuttle vector DNA transfected into monkey cells. Mutat Res. 1994 Jul 16;308(2):117–125. doi: 10.1016/0027-5107(94)90146-5. [DOI] [PubMed] [Google Scholar]
  14. Hall J., Montesano R. DNA alkylation damage: consequences and relevance to tumour production. Mutat Res. 1990 Nov-Dec;233(1-2):247–252. doi: 10.1016/0027-5107(90)90167-3. [DOI] [PubMed] [Google Scholar]
  15. Hneihen A. S., Standeven A. M., Wetterhahn K. E. Differential binding of chromium(VI) and chromium(III) complexes to salmon sperm nuclei and nuclear DNA and isolated calf thymus DNA. Carcinogenesis. 1993 Sep;14(9):1795–1803. doi: 10.1093/carcin/14.9.1795. [DOI] [PubMed] [Google Scholar]
  16. Inga A., Iannone R., Campomenosi P., Molina F., Menichini P., Abbondandolo A., Fronza G. Mutational fingerprint induced by the antineoplastic drug chloroethyl-cyclohexyl-nitrosourea in mammalian cells. Cancer Res. 1995 Oct 15;55(20):4658–4663. [PubMed] [Google Scholar]
  17. Levy D. D., Groopman J. D., Lim S. E., Seidman M. M., Kraemer K. H. Sequence specificity of aflatoxin B1-induced mutations in a plasmid replicated in xeroderma pigmentosum and DNA repair proficient human cells. Cancer Res. 1992 Oct 15;52(20):5668–5673. [PubMed] [Google Scholar]
  18. Litinski V., Chenna A., Sagi J., Singer B. Sequence context is an important determinant in the mutagenic potential of 1,N6-ethenodeoxyadenosine (epsilonA): formation of epsilonA basepairs and elongation in defined templates. Carcinogenesis. 1997 Aug;18(8):1609–1615. doi: 10.1093/carcin/18.8.1609. [DOI] [PubMed] [Google Scholar]
  19. Liu S., Dixon K. Induction of mutagenic DNA damage by chromium (VI) and glutathione. Environ Mol Mutagen. 1996;28(2):71–79. doi: 10.1002/(SICI)1098-2280(1996)28:2<71::AID-EM2>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  20. Madzak C., Armier J., Stary A., Daya-Grosjean L., Sarasin A. UV-induced mutations in a shuttle vector replicated in repair deficient trichothiodystrophy cells differ with those in genetically-related cancer prone xeroderma pigmentosum. Carcinogenesis. 1993 Jul;14(7):1255–1260. doi: 10.1093/carcin/14.7.1255. [DOI] [PubMed] [Google Scholar]
  21. Miller P. S., Fang K. N., Kondo N. S., Ts'o P. O. Syntheses and properties of adenine and thymine nucleoside alkyl phosphotriesters, the neutral analogs of dinucleoside monophosphates. J Am Chem Soc. 1971 Dec;93(24):6657–6665. doi: 10.1021/ja00753a054. [DOI] [PubMed] [Google Scholar]
  22. Murata-Kamiya N., Kamiya H., Kaji H., Kasai H. Glyoxal, a major product of DNA oxidation, induces mutations at G:C sites on a shuttle vector plasmid replicated in mammalian cells. Nucleic Acids Res. 1997 May 15;25(10):1897–1902. doi: 10.1093/nar/25.10.1897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Panigrahi G. B., Walker I. G. The N2-guanine adduct but not the C8-guanine or N6-adenine adducts formed by 4-nitroquinoline 1-oxide blocks the 3'-5' exonuclease action of T4 DNA polymerase. Biochemistry. 1990 Feb 27;29(8):2122–2126. doi: 10.1021/bi00460a023. [DOI] [PubMed] [Google Scholar]
  24. Parris C. N., Seidman M. M. A signature element distinguishes sibling and independent mutations in a shuttle vector plasmid. Gene. 1992 Aug 1;117(1):1–5. doi: 10.1016/0378-1119(92)90482-5. [DOI] [PubMed] [Google Scholar]
  25. Rao S., Chenna A., Slupska M., Singer B. Replication of O4-methylthymine-containing oligonucleotides: effect of 3' and 5' flanking bases on formation and extension of O4-methylthymine . guanine basepairs. Mutat Res. 1996 Sep 23;356(2):179–185. doi: 10.1016/0027-5107(96)00052-8. [DOI] [PubMed] [Google Scholar]
  26. Sander C., Ts'o P. O. Interaction of nucleic acids. 8. Binding of magnesium ions by nucleic acids. J Mol Biol. 1971 Jan 14;55(1):1–21. doi: 10.1016/0022-2836(71)90276-2. [DOI] [PubMed] [Google Scholar]
  27. Saris C. P., Damman S. J., van den Ende A. M., Westra J. G., den Engelse L. A 32P-postlabelling assay for the detection of alkylphosphotriesters in DNA. Carcinogenesis. 1995 Jul;16(7):1543–1548. doi: 10.1093/carcin/16.7.1543. [DOI] [PubMed] [Google Scholar]
  28. Seidman M. M., Bredberg A., Seetharam S., Kraemer K. H. Multiple point mutations in a shuttle vector propagated in human cells: evidence for an error-prone DNA polymerase activity. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4944–4948. doi: 10.1073/pnas.84.14.4944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sen P., Conway K., Costa M. Comparison of the localization of chromosome damage induced by calcium chromate and nickel compounds. Cancer Res. 1987 Apr 15;47(8):2142–2147. [PubMed] [Google Scholar]
  30. Snow E. T., Xu L. S. Chromium(III) bound to DNA templates promotes increased polymerase processivity and decreased fidelity during replication in vitro. Biochemistry. 1991 Nov 26;30(47):11238–11245. doi: 10.1021/bi00111a007. [DOI] [PubMed] [Google Scholar]
  31. Stearns D. M., Kennedy L. J., Courtney K. D., Giangrande P. H., Phieffer L. S., Wetterhahn K. E. Reduction of chromium(VI) by ascorbate leads to chromium-DNA binding and DNA strand breaks in vitro. Biochemistry. 1995 Jan 24;34(3):910–919. doi: 10.1021/bi00003a025. [DOI] [PubMed] [Google Scholar]
  32. Stearns D. M., Wetterhahn K. E. Reaction of chromium(VI) with ascorbate produces chromium(V), chromium(IV), and carbon-based radicals. Chem Res Toxicol. 1994 Mar-Apr;7(2):219–230. doi: 10.1021/tx00038a016. [DOI] [PubMed] [Google Scholar]
  33. Sugiyama M., Wang X. W., Costa M. Comparison of DNA lesions and cytotoxicity induced by calcium chromate in human, mouse, and hamster cell lines. Cancer Res. 1986 Sep;46(9):4547–4551. [PubMed] [Google Scholar]
  34. Swann P. F. Why do O6-alkylguanine and O4-alkylthymine miscode? The relationship between the structure of DNA containing O6-alkylguanine and O4-alkylthymine and the mutagenic properties of these bases. Mutat Res. 1990 Nov-Dec;233(1-2):81–94. doi: 10.1016/0027-5107(90)90153-u. [DOI] [PubMed] [Google Scholar]
  35. Tan H. B., Swann P. F., Chance E. M. Kinetic analysis of the coding properties of O6-methylguanine in DNA: the crucial role of the conformation of the phosphodiester bond. Biochemistry. 1994 May 3;33(17):5335–5346. doi: 10.1021/bi00183a042. [DOI] [PubMed] [Google Scholar]
  36. Waters L. C., Sikpi M. O., Preston R. J., Mitra S., Jaberaboansari A. Mutations induced by ionizing radiation in a plasmid replicated in human cells. I. Similar, nonrandom distribution of mutations in unirradiated and X-irradiated DNA. Radiat Res. 1991 Aug;127(2):190–201. [PubMed] [Google Scholar]
  37. Xu J., Bubley G. J., Detrick B., Blankenship L. J., Patierno S. R. Chromium(VI) treatment of normal human lung cells results in guanine-specific DNA polymerase arrest, DNA-DNA cross-links and S-phase blockade of cell cycle. Carcinogenesis. 1996 Jul;17(7):1511–1517. doi: 10.1093/carcin/17.7.1511. [DOI] [PubMed] [Google Scholar]
  38. Yang J. L., Hsieh Y. C., Wu C. W., Lee T. C. Mutational specificity of chromium(VI) compounds in the hprt locus of Chinese hamster ovary-K1 cells. Carcinogenesis. 1992 Nov;13(11):2053–2057. doi: 10.1093/carcin/13.11.2053. [DOI] [PubMed] [Google Scholar]
  39. Zhitkovich A., Voitkun V., Costa M. Formation of the amino acid-DNA complexes by hexavalent and trivalent chromium in vitro: importance of trivalent chromium and the phosphate group. Biochemistry. 1996 Jun 4;35(22):7275–7282. doi: 10.1021/bi960147w. [DOI] [PubMed] [Google Scholar]
  40. Zhitkovich A., Voitkun V., Costa M. Glutathione and free amino acids form stable complexes with DNA following exposure of intact mammalian cells to chromate. Carcinogenesis. 1995 Apr;16(4):907–913. doi: 10.1093/carcin/16.4.907. [DOI] [PubMed] [Google Scholar]
  41. da Cruz Fresco P., Kortenkamp A. The formation of DNA cleaving species during the reduction of chromate by ascorbate. Carcinogenesis. 1994 Sep;15(9):1773–1778. doi: 10.1093/carcin/15.9.1773. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES