Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Apr 15;26(8):1877–1883. doi: 10.1093/nar/26.8.1877

In vitro and in vivo self-cleavage of a viroid RNA with a mutation in the hammerhead catalytic pocket.

S Ambrós 1, R Flores 1
PMCID: PMC147498  PMID: 9518479

Abstract

Peach latent mosaic viroid (PLMVd) can adopt hammerhead structures in both polarity strands. In the course of a study on the variability of this viroid a natural sequence variant has been characterized in which the hammerhead structure of the plus polarity strand has the sequence CCGA instead of the conserved uridine turn motif CUGA present in the catalytic pocket of all natural hammerhead structures. The viroid RNA containing this mutant hammerhead structure, but not those with the two other possible substitutions, U-->A and U-->G, in the same position of the catalytic pocket, showed significant self-cleavage activity during in vitro transcription. Moreover, the corresponding full-length PLMVd cDNA was infectious and the mutation was retained in a fraction of the viroid progeny. These results indicate that the sequence flexibility of the hammerhead structure, acting in vitro and in vivo , is higher than anticipated and provide relevant data for a deeper insight into the catalytic mechanism of this class of ribozymes and into the structure of the uridine turn motif.

Full Text

The Full Text of this article is available as a PDF (285.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beaudry D., Busière F., Lareau F., Lessard C., Perreault J. P. The RNA of both polarities of the peach latent mosaic viroid self-cleaves in vitro solely by single hammerhead structures. Nucleic Acids Res. 1995 Mar 11;23(5):745–752. doi: 10.1093/nar/23.5.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bruening G. Compilation of self-cleaving sequences from plant virus satellite RNAs and other sources. Methods Enzymol. 1989;180:546–558. doi: 10.1016/0076-6879(89)80123-5. [DOI] [PubMed] [Google Scholar]
  3. Byrappa S., Gavin D. K., Gupta K. C. A highly efficient procedure for site-specific mutagenesis of full-length plasmids using Vent DNA polymerase. Genome Res. 1995 Nov;5(4):404–407. doi: 10.1101/gr.5.4.404. [DOI] [PubMed] [Google Scholar]
  4. Daròs J. A., Flores R. Characterization of multiple circular RNAs derived from a plant viroid-like RNA by sequence deletions and duplications. RNA. 1995 Sep;1(7):734–744. [PMC free article] [PubMed] [Google Scholar]
  5. Daròs J. A., Flores R. Identification of a retroviroid-like element from plants. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6856–6860. doi: 10.1073/pnas.92.15.6856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Daròs J. A., Marcos J. F., Hernández C., Flores R. Replication of avocado sunblotch viroid: evidence for a symmetric pathway with two rolling circles and hammerhead ribozyme processing. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12813–12817. doi: 10.1073/pnas.91.26.12813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Di Serio F., Daròs J. A., Ragozzino A., Flores R. A 451-nucleotide circular RNA from cherry with hammerhead ribozymes in its strands of both polarities. J Virol. 1997 Sep;71(9):6603–6610. doi: 10.1128/jvi.71.9.6603-6610.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Domingo E., Martínez-Salas E., Sobrino F., de la Torre J. C., Portela A., Ortín J., López-Galindez C., Pérez-Breña P., Villanueva N., Nájera R. The quasispecies (extremely heterogeneous) nature of viral RNA genome populations: biological relevance--a review. Gene. 1985;40(1):1–8. doi: 10.1016/0378-1119(85)90017-4. [DOI] [PubMed] [Google Scholar]
  9. Epstein L. M., Gall J. G. Self-cleaving transcripts of satellite DNA from the newt. Cell. 1987 Feb 13;48(3):535–543. doi: 10.1016/0092-8674(87)90204-2. [DOI] [PubMed] [Google Scholar]
  10. Forster A. C., Davies C., Sheldon C. C., Jeffries A. C., Symons R. H. Self-cleaving viroid and newt RNAs may only be active as dimers. Nature. 1988 Jul 21;334(6179):265–267. doi: 10.1038/334265a0. [DOI] [PubMed] [Google Scholar]
  11. Forster A. C., Symons R. H. Self-cleavage of plus and minus RNAs of a virusoid and a structural model for the active sites. Cell. 1987 Apr 24;49(2):211–220. doi: 10.1016/0092-8674(87)90562-9. [DOI] [PubMed] [Google Scholar]
  12. Forster A. C., Symons R. H. Self-cleavage of virusoid RNA is performed by the proposed 55-nucleotide active site. Cell. 1987 Jul 3;50(1):9–16. doi: 10.1016/0092-8674(87)90657-x. [DOI] [PubMed] [Google Scholar]
  13. Góra-Sochacka A., Kierzek A., Candresse T., Zagórski W. The genetic stability of potato spindle tuber viroid (PSTVd) molecular variants. RNA. 1997 Jan;3(1):68–74. [PMC free article] [PubMed] [Google Scholar]
  14. Hammond R. W., Owens R. A. Mutational analysis of potato spindle tuber viroid reveals complex relationships between structure and infectivity. Proc Natl Acad Sci U S A. 1987 Jun;84(12):3967–3971. doi: 10.1073/pnas.84.12.3967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Haseloff J., Gerlach W. L. Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature. 1988 Aug 18;334(6183):585–591. doi: 10.1038/334585a0. [DOI] [PubMed] [Google Scholar]
  16. Hernández C., Flores R. Plus and minus RNAs of peach latent mosaic viroid self-cleave in vitro via hammerhead structures. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3711–3715. doi: 10.1073/pnas.89.9.3711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Herold T., Haas B., Singh R. P., Boucher A., Sänger H. L. Sequence analysis of five new field isolates demonstrates that the chain length of potato spindle tuber viroid (PSTVd) is not strictly conserved but as variable as in other viroids. Plant Mol Biol. 1992 May;19(2):329–333. doi: 10.1007/BF00027356. [DOI] [PubMed] [Google Scholar]
  18. Hertel K. J., Pardi A., Uhlenbeck O. C., Koizumi M., Ohtsuka E., Uesugi S., Cedergren R., Eckstein F., Gerlach W. L., Hodgson R. Numbering system for the hammerhead. Nucleic Acids Res. 1992 Jun 25;20(12):3252–3252. doi: 10.1093/nar/20.12.3252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Holland J., Spindler K., Horodyski F., Grabau E., Nichol S., VandePol S. Rapid evolution of RNA genomes. Science. 1982 Mar 26;215(4540):1577–1585. doi: 10.1126/science.7041255. [DOI] [PubMed] [Google Scholar]
  20. Hutchins C. J., Rathjen P. D., Forster A. C., Symons R. H. Self-cleavage of plus and minus RNA transcripts of avocado sunblotch viroid. Nucleic Acids Res. 1986 May 12;14(9):3627–3640. doi: 10.1093/nar/14.9.3627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ishizaka M., Ohshima Y., Tani T. Isolation of active ribozymes from an RNA pool of random sequences using an anchored substrate RNA. Biochem Biophys Res Commun. 1995 Sep 14;214(2):403–409. doi: 10.1006/bbrc.1995.2301. [DOI] [PubMed] [Google Scholar]
  22. Long D. M., Uhlenbeck O. C. Kinetic characterization of intramolecular and intermolecular hammerhead RNAs with stem II deletions. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6977–6981. doi: 10.1073/pnas.91.15.6977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McKay D. B. Structure and function of the hammerhead ribozyme: an unfinished story. RNA. 1996 May;2(5):395–403. [PMC free article] [PubMed] [Google Scholar]
  24. Miller W. A., Hercus T., Waterhouse P. M., Gerlach W. L. A satellite RNA of barley yellow dwarf virus contains a novel hammerhead structure in the self-cleavage domain. Virology. 1991 Aug;183(2):711–720. doi: 10.1016/0042-6822(91)91000-7. [DOI] [PubMed] [Google Scholar]
  25. Murray J. B., Adams C. J., Arnold J. R., Stockley P. G. The roles of the conserved pyrimidine bases in hammerhead ribozyme catalysis: evidence for a magnesium ion-binding site. Biochem J. 1995 Oct 15;311(Pt 2):487–494. doi: 10.1042/bj3110487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Navarro B., Flores R. Chrysanthemum chlorotic mottle viroid: unusual structural properties of a subgroup of self-cleaving viroids with hammerhead ribozymes. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11262–11267. doi: 10.1073/pnas.94.21.11262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Peracchi A., Beigelman L., Usman N., Herschlag D. Rescue of abasic hammerhead ribozymes by exogenous addition of specific bases. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11522–11527. doi: 10.1073/pnas.93.21.11522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pley H. W., Flaherty K. M., McKay D. B. Three-dimensional structure of a hammerhead ribozyme. Nature. 1994 Nov 3;372(6501):68–74. doi: 10.1038/372068a0. [DOI] [PubMed] [Google Scholar]
  29. Polivka H., Staub U., Gross H. J. Variation of viroid profiles in individual grapevine plants: novel grapevine yellow speckle viroid 1 mutants show alterations of hairpin I. J Gen Virol. 1996 Jan;77(Pt 1):155–161. doi: 10.1099/0022-1317-77-1-155. [DOI] [PubMed] [Google Scholar]
  30. Prody G. A., Bakos J. T., Buzayan J. M., Schneider I. R., Bruening G. Autolytic processing of dimeric plant virus satellite RNA. Science. 1986 Mar 28;231(4745):1577–1580. doi: 10.1126/science.231.4745.1577. [DOI] [PubMed] [Google Scholar]
  31. Qu F., Heinrich C., Loss P., Steger G., Tien P., Riesner D. Multiple pathways of reversion in viroids for conservation of structural elements. EMBO J. 1993 May;12(5):2129–2139. doi: 10.1002/j.1460-2075.1993.tb05861.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rastogi T., Beattie T. L., Olive J. E., Collins R. A. A long-range pseudoknot is required for activity of the Neurospora VS ribozyme. EMBO J. 1996 Jun 3;15(11):2820–2825. [PMC free article] [PubMed] [Google Scholar]
  33. Robertus J. D., Ladner J. E., Finch J. T., Rhodes D., Brown R. S., Clark B. F., Klug A. Structure of yeast phenylalanine tRNA at 3 A resolution. Nature. 1974 Aug 16;250(467):546–551. doi: 10.1038/250546a0. [DOI] [PubMed] [Google Scholar]
  34. Ruffner D. E., Stormo G. D., Uhlenbeck O. C. Sequence requirements of the hammerhead RNA self-cleavage reaction. Biochemistry. 1990 Nov 27;29(47):10695–10702. doi: 10.1021/bi00499a018. [DOI] [PubMed] [Google Scholar]
  35. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Scott W. G., Finch J. T., Klug A. The crystal structure of an all-RNA hammerhead ribozyme: a proposed mechanism for RNA catalytic cleavage. Cell. 1995 Jun 30;81(7):991–1002. doi: 10.1016/s0092-8674(05)80004-2. [DOI] [PubMed] [Google Scholar]
  37. Scott W. G., Murray J. B., Arnold J. R., Stoddard B. L., Klug A. Capturing the structure of a catalytic RNA intermediate: the hammerhead ribozyme. Science. 1996 Dec 20;274(5295):2065–2069. doi: 10.1126/science.274.5295.2065. [DOI] [PubMed] [Google Scholar]
  38. Symons R. H. Plant pathogenic RNAs and RNA catalysis. Nucleic Acids Res. 1997 Jul 15;25(14):2683–2689. doi: 10.1093/nar/25.14.2683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tang J., Breaker R. R. Examination of the catalytic fitness of the hammerhead ribozyme by in vitro selection. RNA. 1997 Aug;3(8):914–925. [PMC free article] [PubMed] [Google Scholar]
  40. Uhlenbeck O. C. A small catalytic oligoribonucleotide. Nature. 1987 Aug 13;328(6131):596–600. doi: 10.1038/328596a0. [DOI] [PubMed] [Google Scholar]
  41. Visvader J. E., Symons R. H. Eleven new sequence variants of citrus exocortis viroid and the correlation of sequence with pathogenicity. Nucleic Acids Res. 1985 Apr 25;13(8):2907–2920. doi: 10.1093/nar/13.8.2907. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES