Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1976 Feb;13:11–15. doi: 10.1289/ehp.761311

Time--dose response for nitrogen dioxide exposure in an infectivity model system.

D L Coffin, D E Gardner, E J Blommer
PMCID: PMC1474986  PMID: 1269496

Abstract

The concentration of NO2 in polluted atmosphere is subject to wide variation, according to peak traffic load, industrial productivity, intensity of sunlight and meteorological conditions. Normally NO2 has a low basal concentration with superimposed spikes when the above conditions are optimal for its production. Thus, it is important to determine the relative importance of a short-term, relatively high concentration of NO2 versus exposure for longer periods of minimal dose levels. This problem was approached experimentally by measuring the effect of NO2 on an animal's resistance to the induction of bacterial pneumonia. The data collected indicate that: (1) in short-term dose-response studies using the same Ct (concentration x time) product of 7, the actual concentration exerts a greater influence on NO2 effect than does the duration of exposure; (2) when concentration is held constant and the time increased, the average difference in mortality from controls can be seen after only 1 hr exposure to 3.5 ppm and after 3 weeks of exposure to 0.5 ppm; and (3) the relative mean survival time at 3.5 ppm for 1 hr was 18--36 hr less than that of the control animals.

Full text

PDF
11

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOREN H. G. CARBON AS A CARRIER MECHANISM FOR IRRITANT GASES. Arch Environ Health. 1964 Jan;8:119–124. doi: 10.1080/00039896.1964.10663639. [DOI] [PubMed] [Google Scholar]
  2. Chow C. K., Tappel A. L. An enzymatic protective mechanism against lipid peroxidation damage to lungs of ozone-exposed rats. Lipids. 1972 Aug;7(8):518–524. doi: 10.1007/BF02533017. [DOI] [PubMed] [Google Scholar]
  3. Coffin D. L., Blommer E. J. Acute toxicity of irradiated auto exhaust. Its indication by enhancement of mortality from streptococcal pneumonia. Arch Environ Health. 1967 Jul;15(1):36–38. doi: 10.1080/00039896.1967.10664870. [DOI] [PubMed] [Google Scholar]
  4. Coffin D. L., Gardner D. E., Holzman R. S., Wolock F. J. Influence of ozone on pulmonary cells. Arch Environ Health. 1968 May;16(5):633–636. doi: 10.1080/00039896.1968.10665119. [DOI] [PubMed] [Google Scholar]
  5. Coffin D. L., Gardner D. E. Interaction of biological agents and chemical air pollutants. Ann Occup Hyg. 1972 Nov;15(2):219–235. doi: 10.1093/annhyg/15.2-4.219. [DOI] [PubMed] [Google Scholar]
  6. Ehrlich R. Effect of nitrogen dioxide on resistance to respiratory infection. Bacteriol Rev. 1966 Sep;30(3):604–614. doi: 10.1128/br.30.3.604-614.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ehrlich R., Henry M. C. Chronic toxicity of nitrogen dioxide. I. Effect on resistance to bacterial pneumonia. Arch Environ Health. 1968 Dec;17(6):860–865. doi: 10.1080/00039896.1968.10665342. [DOI] [PubMed] [Google Scholar]
  8. Ehrlich R., Silverstein E., Maigetter R., Fenters J. D. Immunologic response in vaccinated mice during long-term exposure to nitrogen dioxide. Environ Res. 1975 Oct;10(2):217–223. doi: 10.1016/0013-9351(75)90085-7. [DOI] [PubMed] [Google Scholar]
  9. Freeman G., Crane S. C., Stephens R. J., Furiosi N. J. The subacute nitrogen dioxide-induced lesion of the rat lung. Arch Environ Health. 1969 Apr;18(4):609–612. doi: 10.1080/00039896.1969.10665460. [DOI] [PubMed] [Google Scholar]
  10. Freeman G., Juhos L. T., Furiosi N. J., Mussenden R., Stephens R. J., Evans M. J. Pathology of pulmonary disease from exposure to interdependent ambient gases (nitrogen dioxide and ozone). Arch Environ Health. 1974 Oct;29(4):203–210. doi: 10.1080/00039896.1974.10666569. [DOI] [PubMed] [Google Scholar]
  11. GREEN G. M., KASS E. H. THE ROLE OF THE ALVEOLAR MACROPHAGE IN THE CLEARANCE OF BACTERIA FROM THE LUNG. J Exp Med. 1964 Jan 1;119:167–176. doi: 10.1084/jem.119.1.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gardner D. E., Holzman R. S., Coffin D. L. Effects of nitrogen dioxide on pulmonary cell population. J Bacteriol. 1969 Jun;98(3):1041–1043. doi: 10.1128/jb.98.3.1041-1043.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gardner D. E., Pfitzer E. A., Christian R. T., Coffin D. L. Loss of protective factor for alveolar macrophages when exposed to ozone. Arch Intern Med. 1971 Jun;127(6):1078–1084. [PubMed] [Google Scholar]
  14. Godleski J. J., Brain J. D. The origin of alveolar macrophages in mouse radiation chimeras. J Exp Med. 1972 Sep 1;136(3):630–643. doi: 10.1084/jem.136.3.630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Henry M. C., Ehrlich R., Blair W. H. Effect of nitrogen dioxide on resistance of squirrel monkeys to Klebsiella pneumoniae infection. Arch Environ Health. 1969 Apr;18(4):580–587. doi: 10.1080/00039896.1969.10665456. [DOI] [PubMed] [Google Scholar]
  16. Menzel D. B., Roehm J. N., Lee S. D. Vitamin E: the biological and environmental antioxidant. J Agric Food Chem. 1972 May-Jun;20(3):481–486. doi: 10.1021/jf60181a039. [DOI] [PubMed] [Google Scholar]
  17. WAGNER W. D., DUNCAN B. R., WRIGHT P. G., STOKINGER H. E. EXPERIMENTAL STUDY OF THRESHOLD LIMIT OF NO2. Arch Environ Health. 1965 Mar;10:455–466. doi: 10.1080/00039896.1965.10664029. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES