Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Apr 15;26(8):1891–1898. doi: 10.1093/nar/26.8.1891

Functional association of poly(ADP-ribose) polymerase with DNA polymerase alpha-primase complex: a link between DNA strand break detection and DNA replication.

F Dantzer 1, H P Nasheuer 1, J L Vonesch 1, G de Murcia 1, J Ménissier-de Murcia 1
PMCID: PMC147507  PMID: 9518481

Abstract

Poly(ADP-ribose) polymerase (PARP) is an element of the DNA damage surveillance network evolved by eukaryotic cells to cope with numerous environmental and endogenous genotoxic agents. PARP has been found to be involved in vivo in both cell proliferation and base excision repair of DNA. In this study the interaction between PARP and the DNA polymerase alpha-primase tetramer has been examined. We provide evidence that in proliferating cells: (i) PARP is physically associated with the catalytic subunit of the DNA polymerase alpha-primase tetramer, an association confirmed by confocal microscopy, demonstrating that both enzymes are co-localized at the nuclear periphery of HeLa cells; (ii) this interaction requires the integrity of the second zinc finger of PARP and is maximal during the S and G2/M phases of the cell cycle; (iii) PARP-deficient cells derived from PARP knock-out mice exhibited reduced DNA polymerase activity, compared with the parental cells, a reduction accentuated following exposure to sublethal doses of methylmethanesulfonate. Altogether, the present results strongly suggest that PARP participates in a DNA damage survey mechanism implying its nick-sensor function as part of the control of replication fork progression when breaks are present in the template.

Full Text

The Full Text of this article is available as a PDF (329.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buki K. G., Bauer P. I., Hakam A., Kun E. Identification of domains of poly(ADP-ribose) polymerase for protein binding and self-association. J Biol Chem. 1995 Feb 17;270(7):3370–3377. doi: 10.1074/jbc.270.7.3370. [DOI] [PubMed] [Google Scholar]
  2. Casciola-Rosen L., Nicholson D. W., Chong T., Rowan K. R., Thornberry N. A., Miller D. K., Rosen A. Apopain/CPP32 cleaves proteins that are essential for cellular repair: a fundamental principle of apoptotic death. J Exp Med. 1996 May 1;183(5):1957–1964. doi: 10.1084/jem.183.5.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Collins K. L., Russo A. A., Tseng B. Y., Kelly T. J. The role of the 70 kDa subunit of human DNA polymerase alpha in DNA replication. EMBO J. 1993 Dec;12(12):4555–4566. doi: 10.1002/j.1460-2075.1993.tb06144.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Copeland W. C., Wang T. S. Catalytic subunit of human DNA polymerase alpha overproduced from baculovirus-infected insect cells. Structural and enzymological characterization. J Biol Chem. 1991 Nov 25;266(33):22739–22748. [PubMed] [Google Scholar]
  5. Ding R., Pommier Y., Kang V. H., Smulson M. Depletion of poly(ADP-ribose) polymerase by antisense RNA expression results in a delay in DNA strand break rejoining. J Biol Chem. 1992 Jun 25;267(18):12804–12812. [PubMed] [Google Scholar]
  6. Dulić V., Kaufmann W. K., Wilson S. J., Tlsty T. D., Lees E., Harper J. W., Elledge S. J., Reed S. I. p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell. 1994 Mar 25;76(6):1013–1023. doi: 10.1016/0092-8674(94)90379-4. [DOI] [PubMed] [Google Scholar]
  7. Eki T., Hurwitz J. Influence of poly(ADP-ribose) polymerase on the enzymatic synthesis of SV40 DNA. J Biol Chem. 1991 Feb 15;266(5):3087–3100. [PubMed] [Google Scholar]
  8. Eki T. Poly (ADP-ribose) polymerase inhibits DNA replication by human replicative DNA polymerase alpha, delta and epsilon in vitro. FEBS Lett. 1994 Dec 19;356(2-3):261–266. doi: 10.1016/0014-5793(94)01280-6. [DOI] [PubMed] [Google Scholar]
  9. Ferro A. M., Higgins N. P., Olivera B. M. Poly(ADP-ribosylation) of a DNA topoisomerase. J Biol Chem. 1983 May 25;258(10):6000–6003. [PubMed] [Google Scholar]
  10. Foiani M., Lucchini G., Plevani P. The DNA polymerase alpha-primase complex couples DNA replication, cell-cycle progression and DNA-damage response. Trends Biochem Sci. 1997 Nov;22(11):424–427. doi: 10.1016/s0968-0004(97)01109-2. [DOI] [PubMed] [Google Scholar]
  11. Fornace A. J., Jr Mammalian genes induced by radiation; activation of genes associated with growth control. Annu Rev Genet. 1992;26:507–526. doi: 10.1146/annurev.ge.26.120192.002451. [DOI] [PubMed] [Google Scholar]
  12. Giner H., Simonin F., de Murcia G., Ménissier-de Murcia J. Overproduction and large-scale purification of the human poly(ADP-ribose) polymerase using a baculovirus expression system. Gene. 1992 May 15;114(2):279–283. doi: 10.1016/0378-1119(92)90588-g. [DOI] [PubMed] [Google Scholar]
  13. Goldman N., Brown M., Khoury G. Modification of SV40 T antigen by poly ADP-ribosylation. Cell. 1981 May;24(2):567–572. doi: 10.1016/0092-8674(81)90347-0. [DOI] [PubMed] [Google Scholar]
  14. Gradwohl G., Mazen A., de Murcia G. Poly(ADP-ribose) polymerase forms loops with DNA. Biochem Biophys Res Commun. 1987 Nov 13;148(3):913–919. doi: 10.1016/s0006-291x(87)80219-x. [DOI] [PubMed] [Google Scholar]
  15. Griesenbeck J., Oei S. L., Mayer-Kuckuk P., Ziegler M., Buchlow G., Schweiger M. Protein-protein interaction of the human poly(ADP-ribosyl)transferase depends on the functional state of the enzyme. Biochemistry. 1997 Jun 17;36(24):7297–7304. doi: 10.1021/bi962710g. [DOI] [PubMed] [Google Scholar]
  16. Harper J. W., Adami G. R., Wei N., Keyomarsi K., Elledge S. J. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 1993 Nov 19;75(4):805–816. doi: 10.1016/0092-8674(93)90499-g. [DOI] [PubMed] [Google Scholar]
  17. Hartwell L. H., Weinert T. A. Checkpoints: controls that ensure the order of cell cycle events. Science. 1989 Nov 3;246(4930):629–634. doi: 10.1126/science.2683079. [DOI] [PubMed] [Google Scholar]
  18. Jacobson E. L., Meadows R., Measel J. Cell cycle perturbations following DNA damage in the presence of ADP-ribosylation inhibitors. Carcinogenesis. 1985 May;6(5):711–714. doi: 10.1093/carcin/6.5.711. [DOI] [PubMed] [Google Scholar]
  19. Jongstra-Bilen J., Ittel M. E., Niedergang C., Vosberg H. P., Mandel P. DNA topoisomerase I from calf thymus is inhibited in vitro by poly(ADP-ribosylation). Eur J Biochem. 1983 Nov 2;136(2):391–396. doi: 10.1111/j.1432-1033.1983.tb07754.x. [DOI] [PubMed] [Google Scholar]
  20. Kastan M. B., Zhan Q., el-Deiry W. S., Carrier F., Jacks T., Walsh W. V., Plunkett B. S., Vogelstein B., Fornace A. J., Jr A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell. 1992 Nov 13;71(4):587–597. doi: 10.1016/0092-8674(92)90593-2. [DOI] [PubMed] [Google Scholar]
  21. Kubota Y., Nash R. A., Klungland A., Schär P., Barnes D. E., Lindahl T. Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase beta and the XRCC1 protein. EMBO J. 1996 Dec 2;15(23):6662–6670. [PMC free article] [PubMed] [Google Scholar]
  22. Kuerbitz S. J., Plunkett B. S., Walsh W. V., Kastan M. B. Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7491–7495. doi: 10.1073/pnas.89.16.7491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mancini M. A., Shan B., Nickerson J. A., Penman S., Lee W. H. The retinoblastoma gene product is a cell cycle-dependent, nuclear matrix-associated protein. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):418–422. doi: 10.1073/pnas.91.1.418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Marini F., Pellicioli A., Paciotti V., Lucchini G., Plevani P., Stern D. F., Foiani M. A role for DNA primase in coupling DNA replication to DNA damage response. EMBO J. 1997 Feb 3;16(3):639–650. doi: 10.1093/emboj/16.3.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Moir R. D., Montag-Lowy M., Goldman R. D. Dynamic properties of nuclear lamins: lamin B is associated with sites of DNA replication. J Cell Biol. 1994 Jun;125(6):1201–1212. doi: 10.1083/jcb.125.6.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Molinete M., Vermeulen W., Bürkle A., Ménissier-de Murcia J., Küpper J. H., Hoeijmakers J. H., de Murcia G. Overproduction of the poly(ADP-ribose) polymerase DNA-binding domain blocks alkylation-induced DNA repair synthesis in mammalian cells. EMBO J. 1993 May;12(5):2109–2117. doi: 10.1002/j.1460-2075.1993.tb05859.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nasheuer H. P., Moore A., Wahl A. F., Wang T. S. Cell cycle-dependent phosphorylation of human DNA polymerase alpha. J Biol Chem. 1991 Apr 25;266(12):7893–7903. [PubMed] [Google Scholar]
  28. Navas T. A., Zhou Z., Elledge S. J. DNA polymerase epsilon links the DNA replication machinery to the S phase checkpoint. Cell. 1995 Jan 13;80(1):29–39. doi: 10.1016/0092-8674(95)90448-4. [DOI] [PubMed] [Google Scholar]
  29. Paulovich A. G., Toczyski D. P., Hartwell L. H. When checkpoints fail. Cell. 1997 Feb 7;88(3):315–321. doi: 10.1016/s0092-8674(00)81870-x. [DOI] [PubMed] [Google Scholar]
  30. Roberge M. Checkpoint controls that couple mitosis to completion of DNA replication. Trends Cell Biol. 1992 Sep;2(9):277–281. doi: 10.1016/0962-8924(92)90201-w. [DOI] [PubMed] [Google Scholar]
  31. Rotman G., Shiloh Y. Ataxia-telangiectasia: is ATM a sensor of oxidative damage and stress? Bioessays. 1997 Oct;19(10):911–917. doi: 10.1002/bies.950191011. [DOI] [PubMed] [Google Scholar]
  32. Santocanale C., Foiani M., Lucchini G., Plevani P. The isolated 48,000-dalton subunit of yeast DNA primase is sufficient for RNA primer synthesis. J Biol Chem. 1993 Jan 15;268(2):1343–1348. [PubMed] [Google Scholar]
  33. Savitsky K., Bar-Shira A., Gilad S., Rotman G., Ziv Y., Vanagaite L., Tagle D. A., Smith S., Uziel T., Sfez S. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science. 1995 Jun 23;268(5218):1749–1753. doi: 10.1126/science.7792600. [DOI] [PubMed] [Google Scholar]
  34. Schreiber V., Hunting D., Trucco C., Gowans B., Grunwald D., De Murcia G., De Murcia J. M. A dominant-negative mutant of human poly(ADP-ribose) polymerase affects cell recovery, apoptosis, and sister chromatid exchange following DNA damage. Proc Natl Acad Sci U S A. 1995 May 23;92(11):4753–4757. doi: 10.1073/pnas.92.11.4753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Simbulan-Rosenthal C. M., Rosenthal D. S., Hilz H., Hickey R., Malkas L., Applegren N., Wu Y., Bers G., Smulson M. E. The expression of poly(ADP-ribose) polymerase during differentiation-linked DNA replication reveals that it is a component of the multiprotein DNA replication complex. Biochemistry. 1996 Sep 10;35(36):11622–11633. doi: 10.1021/bi953010z. [DOI] [PubMed] [Google Scholar]
  36. Simbulan C. M., Suzuki M., Izuta S., Sakurai T., Savoysky E., Kojima K., Miyahara K., Shizuta Y., Yoshida S. Poly(ADP-ribose) polymerase stimulates DNA polymerase alpha by physical association. J Biol Chem. 1993 Jan 5;268(1):93–99. [PubMed] [Google Scholar]
  37. Simonin F., Briand J. P., Muller S., de Murcia G. Detection of poly(ADP ribose) polymerase in crude extracts by activity-blot. Anal Biochem. 1991 Jun;195(2):226–231. doi: 10.1016/0003-2697(91)90321-j. [DOI] [PubMed] [Google Scholar]
  38. Smulson M. E., Kang V. H., Ntambi J. M., Rosenthal D. S., Ding R., Simbulan C. M. Requirement for the expression of poly(ADP-ribose) polymerase during the early stages of differentiation of 3T3-L1 preadipocytes, as studied by antisense RNA induction. J Biol Chem. 1995 Jan 6;270(1):119–127. doi: 10.1074/jbc.270.1.119. [DOI] [PubMed] [Google Scholar]
  39. Sobol R. W., Horton J. K., Kühn R., Gu H., Singhal R. K., Prasad R., Rajewsky K., Wilson S. H. Requirement of mammalian DNA polymerase-beta in base-excision repair. Nature. 1996 Jan 11;379(6561):183–186. doi: 10.1038/379183a0. [DOI] [PubMed] [Google Scholar]
  40. Stadlbauer F., Brueckner A., Rehfuess C., Eckerskorn C., Lottspeich F., Förster V., Tseng B. Y., Nasheuer H. P. DNA replication in vitro by recombinant DNA-polymerase-alpha-primase. Eur J Biochem. 1994 Jun 15;222(3):781–793. doi: 10.1111/j.1432-1033.1994.tb18925.x. [DOI] [PubMed] [Google Scholar]
  41. Stillman B. Smart machines at the DNA replication fork. Cell. 1994 Sep 9;78(5):725–728. doi: 10.1016/s0092-8674(94)90362-x. [DOI] [PubMed] [Google Scholar]
  42. Tanaka S., Hu S. Z., Wang T. S., Korn D. Preparation and preliminary characterization of monoclonal antibodies against human DNA polymerase alpha. J Biol Chem. 1982 Jul 25;257(14):8386–8390. [PubMed] [Google Scholar]
  43. Trucco C., Flatter E., Fribourg S., de Murcia G., Ménissier-de Murcia J. Mutations in the amino-terminal domain of the human poly(ADP-ribose) polymerase that affect its catalytic activity but not its DNA binding capacity. FEBS Lett. 1996 Dec 16;399(3):313–316. doi: 10.1016/s0014-5793(96)01347-6. [DOI] [PubMed] [Google Scholar]
  44. Waga S., Hannon G. J., Beach D., Stillman B. The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature. 1994 Jun 16;369(6481):574–578. doi: 10.1038/369574a0. [DOI] [PubMed] [Google Scholar]
  45. Wang Z. Q., Stingl L., Morrison C., Jantsch M., Los M., Schulze-Osthoff K., Wagner E. F. PARP is important for genomic stability but dispensable in apoptosis. Genes Dev. 1997 Sep 15;11(18):2347–2358. doi: 10.1101/gad.11.18.2347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. de Murcia G., Huletsky A., Lamarre D., Gaudreau A., Pouyet J., Daune M., Poirier G. G. Modulation of chromatin superstructure induced by poly(ADP-ribose) synthesis and degradation. J Biol Chem. 1986 May 25;261(15):7011–7017. [PubMed] [Google Scholar]
  47. de Murcia G., Ménissier de Murcia J. Poly(ADP-ribose) polymerase: a molecular nick-sensor. Trends Biochem Sci. 1994 Apr;19(4):172–176. doi: 10.1016/0968-0004(94)90280-1. [DOI] [PubMed] [Google Scholar]
  48. de Murcia J. M., Niedergang C., Trucco C., Ricoul M., Dutrillaux B., Mark M., Oliver F. J., Masson M., Dierich A., LeMeur M. Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7303–7307. doi: 10.1073/pnas.94.14.7303. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES