Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 May 1;26(9):2156–2160. doi: 10.1093/nar/26.9.2156

The importance of base pairing in the penultimate stem of Escherichia coli 16S rRNA for ribosomal subunit association.

M A Firpo 1, A E Dahlberg 1
PMCID: PMC147509  PMID: 9547274

Abstract

The influence of base pairing in the penultimate stem of Escherichia coli 16S rRNA (defined as nt 1409-1491) on ribosome function has been addressed by the construction of mutations in this region of rRNA. Two sets of mutations were made on either side of a structurally conserved region in the penultimate stem that disrupted base pairing, while a third set of mutations replaced the wild-type sequence with other base pair combinations. The effects of these mutations were analyzed in vivo and in vitro . The mutations that disrupted base pairing caused significant increases in cell doubling times as well as a severe subunit association defect and a modest increase in frame shifting and stop codon read-through. Restoration of base pairing restored wild-type growth rates, decoding and subunit association, indicating that base pairing in this region is essential for proper ribosome function.

Full Text

The Full Text of this article is available as a PDF (71.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen P. N., Noller H. F. A single base substitution in 16S ribosomal RNA suppresses streptomycin dependence and increases the frequency of translational errors. Cell. 1991 Jul 12;66(1):141–148. doi: 10.1016/0092-8674(91)90146-p. [DOI] [PubMed] [Google Scholar]
  2. Brosius J., Dull T. J., Sleeter D. D., Noller H. F. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol. 1981 May 15;148(2):107–127. doi: 10.1016/0022-2836(81)90508-8. [DOI] [PubMed] [Google Scholar]
  3. Brosius J., Ullrich A., Raker M. A., Gray A., Dull T. J., Gutell R. R., Noller H. F. Construction and fine mapping of recombinant plasmids containing the rrnB ribosomal RNA operon of E. coli. Plasmid. 1981 Jul;6(1):112–118. doi: 10.1016/0147-619x(81)90058-5. [DOI] [PubMed] [Google Scholar]
  4. Dahlberg A. E. The functional role of ribosomal RNA in protein synthesis. Cell. 1989 May 19;57(4):525–529. doi: 10.1016/0092-8674(89)90122-0. [DOI] [PubMed] [Google Scholar]
  5. De Stasio E. A., Moazed D., Noller H. F., Dahlberg A. E. Mutations in 16S ribosomal RNA disrupt antibiotic--RNA interactions. EMBO J. 1989 Apr;8(4):1213–1216. doi: 10.1002/j.1460-2075.1989.tb03494.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Firpo M. A., Connelly M. B., Goss D. J., Dahlberg A. E. Mutations at two invariant nucleotides in the 3'-minor domain of Escherichia coli 16 S rRNA affecting translational initiation and initiation factor 3 function. J Biol Chem. 1996 Mar 1;271(9):4693–4698. doi: 10.1074/jbc.271.9.4693. [DOI] [PubMed] [Google Scholar]
  7. Godson G. N., Sinsheimer R. L. Use of Brij lysis as a general method to prepare polyribosomes from Escherichia coli. Biochim Biophys Acta. 1967 Dec 19;149(2):489–495. doi: 10.1016/0005-2787(67)90176-1. [DOI] [PubMed] [Google Scholar]
  8. Gourse R. L., Takebe Y., Sharrock R. A., Nomura M. Feedback regulation of rRNA and tRNA synthesis and accumulation of free ribosomes after conditional expression of rRNA genes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1069–1073. doi: 10.1073/pnas.82.4.1069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Green R., Noller H. F. Ribosomes and translation. Annu Rev Biochem. 1997;66:679–716. doi: 10.1146/annurev.biochem.66.1.679. [DOI] [PubMed] [Google Scholar]
  10. Gregory S. T., Dahlberg A. E. Nonsense suppressor and antisuppressor mutations at the 1409-1491 base pair in the decoding region of Escherichia coli 16S rRNA. Nucleic Acids Res. 1995 Nov 11;23(21):4234–4238. doi: 10.1093/nar/23.21.4234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gutell R. R., Larsen N., Woese C. R. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol Rev. 1994 Mar;58(1):10–26. doi: 10.1128/mr.58.1.10-26.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gutell R. R., Weiser B., Woese C. R., Noller H. F. Comparative anatomy of 16-S-like ribosomal RNA. Prog Nucleic Acid Res Mol Biol. 1985;32:155–216. doi: 10.1016/s0079-6603(08)60348-7. [DOI] [PubMed] [Google Scholar]
  13. Götz F., Fleischer C., Pon C. L., Gualerzi C. O. Subunit association defects in Escherichia coli ribosome mutants lacking proteins S20 and L11. Eur J Biochem. 1989 Jul 15;183(1):19–24. doi: 10.1111/j.1432-1033.1989.tb14890.x. [DOI] [PubMed] [Google Scholar]
  14. Hubbard J. M., Hearst J. E. Computer modeling 16 S ribosomal RNA. J Mol Biol. 1991 Oct 5;221(3):889–907. doi: 10.1016/0022-2836(91)80182-t. [DOI] [PubMed] [Google Scholar]
  15. Meier N., Göringer H. U., Kleuvers B., Scheibe U., Eberle J., Szymkowiak C., Zacharias M., Wagner R. The importance of individual nucleotides for the structure and function of rRNA molecules in E. coli. A mutagenesis study. FEBS Lett. 1986 Aug 11;204(1):89–95. doi: 10.1016/0014-5793(86)81392-8. [DOI] [PubMed] [Google Scholar]
  16. Meier N., Wagner R. Effects of the ribosomal subunit association on the chemical modification of the 16S and 23S RNAs from Escherichia coli. Eur J Biochem. 1985 Jan 2;146(1):83–87. doi: 10.1111/j.1432-1033.1985.tb08622.x. [DOI] [PubMed] [Google Scholar]
  17. Mitchell P., Osswald M., Brimacombe R. Identification of intermolecular RNA cross-links at the subunit interface of the Escherichia coli ribosome. Biochemistry. 1992 Mar 24;31(11):3004–3011. doi: 10.1021/bi00126a023. [DOI] [PubMed] [Google Scholar]
  18. Mitchell P., Stade K., Osswald M., Brimacombe R. Site-directed cross-linking studies on the E. coli tRNA-ribosome complex: determination of sites labelled with an aromatic azide attached to the variable loop or aminoacyl group of tRNA. Nucleic Acids Res. 1993 Feb 25;21(4):887–896. doi: 10.1093/nar/21.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Murgola E. J., Pagel F. T., Hijazi K. A., Arkov A. L., Xu W., Zhao S. Q. Variety of nonsense suppressor phenotypes associated with mutational changes at conserved sites in Escherichia coli ribosomal RNA. Biochem Cell Biol. 1995 Nov-Dec;73(11-12):925–931. doi: 10.1139/o95-100. [DOI] [PubMed] [Google Scholar]
  20. Noller H. F. Ribosomal RNA and translation. Annu Rev Biochem. 1991;60:191–227. doi: 10.1146/annurev.bi.60.070191.001203. [DOI] [PubMed] [Google Scholar]
  21. O'Connor M., Dahlberg A. E. Mutations at U2555, a tRNA-protected base in 23S rRNA, affect translational fidelity. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):9214–9218. doi: 10.1073/pnas.90.19.9214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. O'Connor M., De Stasio E. A., Dahlberg A. E. Interaction between 16S ribosomal RNA and ribosomal protein S12: differential effects of paromomycin and streptomycin. Biochimie. 1991 Dec;73(12):1493–1500. doi: 10.1016/0300-9084(91)90183-2. [DOI] [PubMed] [Google Scholar]
  23. O'Connor M., Göringer H. U., Dahlberg A. E. A ribosomal ambiguity mutation in the 530 loop of E. coli 16S rRNA. Nucleic Acids Res. 1992 Aug 25;20(16):4221–4227. doi: 10.1093/nar/20.16.4221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rottmann N., Kleuvers B., Atmadja J., Wagner R. Mutants with base changes at the 3'-end of the 16S RNA from Escherichia coli. Construction, expression and functional analysis. Eur J Biochem. 1988 Oct 15;177(1):81–90. doi: 10.1111/j.1432-1033.1988.tb14347.x. [DOI] [PubMed] [Google Scholar]
  25. Rydén-Aulin M., Shaoping Z., Kylsten P., Isaksson L. A. Ribosome activity and modification of 16S RNA are influenced by deletion of ribosomal protein S20. Mol Microbiol. 1993 Mar;7(6):983–992. doi: 10.1111/j.1365-2958.1993.tb01190.x. [DOI] [PubMed] [Google Scholar]
  26. Sigmund C. D., Ettayebi M., Borden A., Morgan E. A. Antibiotic resistance mutations in ribosomal RNA genes of Escherichia coli. Methods Enzymol. 1988;164:673–690. doi: 10.1016/s0076-6879(88)64077-8. [DOI] [PubMed] [Google Scholar]
  27. Sprengart M. L., Fatscher H. P., Fuchs E. The initiation of translation in E. coli: apparent base pairing between the 16srRNA and downstream sequences of the mRNA. Nucleic Acids Res. 1990 Apr 11;18(7):1719–1723. doi: 10.1093/nar/18.7.1719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sprengart M. L., Fuchs E., Porter A. G. The downstream box: an efficient and independent translation initiation signal in Escherichia coli. EMBO J. 1996 Feb 1;15(3):665–674. [PMC free article] [PubMed] [Google Scholar]
  29. Stern S., Changchien L. M., Craven G. R., Noller H. F. Interaction of proteins S16, S17 and S20 with 16 S ribosomal RNA. J Mol Biol. 1988 Mar 20;200(2):291–299. doi: 10.1016/0022-2836(88)90241-0. [DOI] [PubMed] [Google Scholar]
  30. Stern S., Weiser B., Noller H. F. Model for the three-dimensional folding of 16 S ribosomal RNA. J Mol Biol. 1988 Nov 20;204(2):447–481. doi: 10.1016/0022-2836(88)90588-8. [DOI] [PubMed] [Google Scholar]
  31. Zwieb C., Jemiolo D. K., Jacob W. F., Wagner R., Dahlberg A. E. Characterization of a collection of deletion mutants at the 3'-end of 16S ribosomal RNA of Escherichia coli. Mol Gen Genet. 1986 May;203(2):256–264. doi: 10.1007/BF00333963. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES