Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1974 May;7:133–137. doi: 10.1289/ehp.747133

Red Cell Lead, Whole Blood Lead, and Red Cell Enzymes*

Carol R Angle, Matilda S McIntire
PMCID: PMC1475113  PMID: 4364646

Abstract

Simultaneous assay of blood lead (Pb-B) and red cell lead (Pb-Rbc) in 123 samples from 104 urban and suburban students, ages 10–18, shows the ratio of concentration (Pb-Rbc)/(Pb-B) to increase as the hematocrit decreases. On direct assay in 40 samples, plasma lead (Pb-P) was fixed in a narrow range. In 28 students with Pb-Rbc >40 μg/100 ml, the mean red cell 2,3-diphosphoglycerate (2,3-DPG) was 6.05±0.28 (±S.E.), significantly higher (P<.025) than the 5.25±0.18 of 51 students with Pb-Rbc<40 μg/100 ml, although hemoglobin values were comparable (13.83±0.31 versus 13.55±0.20). Analysis of the individual population groups showed this correlation of Pb-Rbc with 2,3-DPG to be primarily related to the intercorrelation of each parameter with hemoglobin.

Rbc membrane Na/K ATPase, as per cent of total membrane ATPase, had a median value of 60% in 48 subjects. Na/K ATPase below 60% was found in 10 (77%) of the 13 students with Pb-Rbc≥40 μg/100 ml, but in only 14 of the 35 with Pb-Rbc<40 μg/100 ml (χ2=5.1, df=1, P<0.05).

Correlation of significant enzyme changes with Pb-Rbc, but not with Pb-B in the normal urban range of Pb-B<35 μg/100 ml suggests Pb-Rbc, increased in anemia, to be a critical factor in the hematotoxicity of lead.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Batolska A., Marinova H. Modifications du glutathion chez les travailleurs d'une entreprise métallurgique minière. Arch Mal Prof. 1970 Mar;31(3):117–122. [PubMed] [Google Scholar]
  2. Bishop C. Assay of glucose-6-phosphate dehydrogenase (E.C. 1.1.1.49) and 6-phosphogluconate dehydrogenase (E.C. 1.1.1.43) in red cells. J Lab Clin Med. 1966 Jul;68(1):149–155. [PubMed] [Google Scholar]
  3. Delves H. T. A micro-sampling method for the rapid determination of lead in blood by atomic-absorption spectrophotometry. Analyst. 1970 May;95(130):431–438. doi: 10.1039/an9709500431. [DOI] [PubMed] [Google Scholar]
  4. Farrelly R. O., Pybus J. Measurement of lead in blood and urine by atomic absorption spectrophotometry. Clin Chem. 1969 Jul;15(7):566–574. [PubMed] [Google Scholar]
  5. Hasan J., Hernberg S., Metsälä P., Vihko V. Enhanced potassium loss in blood cells from men exposed to lead. Arch Environ Health. 1967 Feb;14(2):309–312. doi: 10.1080/00039896.1967.10664737. [DOI] [PubMed] [Google Scholar]
  6. Hasan J., Vihko V., Hernberg S. Deficient red cell membrane /Na++K+/-ATPase in lead poisoning. Arch Environ Health. 1967 Feb;14(2):313–318. doi: 10.1080/00039896.1967.10664738. [DOI] [PubMed] [Google Scholar]
  7. Kochen J. A., Greener Y. Levels of lead in blood and hematocrit: implications for the evaluation of the newborn and anemic patient. Pediatr Res. 1973 Nov;7(11):937–944. doi: 10.1203/00006450-197311000-00011. [DOI] [PubMed] [Google Scholar]
  8. Maeda N., Chang H., Benesch R., Benesch R. E. A simple enzymatic method for the determination of 2,3-diphosphoglycerate in small amounts of blood. N Engl J Med. 1971 Jun 3;284(22):1239–1242. doi: 10.1056/NEJM197106032842204. [DOI] [PubMed] [Google Scholar]
  9. McIntire M. S., Angle C. R. Air lead: relation to lead in blood of black school children deficient in glucose-6-phosphate dehydrogenase. Science. 1972 Aug 11;177(4048):520–522. doi: 10.1126/science.177.4048.520. [DOI] [PubMed] [Google Scholar]
  10. McIntire M. S., Wolf G. L., Angle C. R. Red cell lead and -amino levulinic acid dehydratase. Clin Toxicol. 1973;6(2):183–188. doi: 10.3109/15563657308990516. [DOI] [PubMed] [Google Scholar]
  11. POST R. L., MERRITT C. R., KINSOLVING C. R., ALBRIGHT C. D. Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte. J Biol Chem. 1960 Jun;235:1796–1802. [PubMed] [Google Scholar]
  12. Riordan J. R., Passow H. Effects of calcium and lead on potassium permeability of human erythrocyte ghosts. Biochim Biophys Acta. 1971 Dec 3;249(2):601–605. doi: 10.1016/0005-2736(71)90139-8. [DOI] [PubMed] [Google Scholar]
  13. Rosen J. F., Trinidad E. E. Significance of plasma lead levels in normal and lead-intoxicated children. Environ Health Perspect. 1974 May;7:139–144. doi: 10.1289/ehp.747139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Secchi G. C., Alessio L. Ricerche sul meccanismo d'inibizione della Na+-K+-ATPasi eritrocitaria ad opera del piombo. Med Lav. 1969 Nov;60(11):670–673. [PubMed] [Google Scholar]
  15. Secchi G. C., Ambrosi L., Rezzonico A. Ricerche sulla Na+-K+-ATPasi e sulla acetilcolinesterasi delle membrane eritrocitarie nell'anemia saturnina. Med Lav. 1968 Oct;59(10):593–598. [PubMed] [Google Scholar]
  16. VINCENT P. C. The effects of heavy metal ions on the human erythrocyte. II. The effects of lead and mercury. Aust J Exp Biol Med Sci. 1958 Dec;36(6):589–601. doi: 10.1038/icb.1958.64. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES