Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 May 1;26(9):2224–2229. doi: 10.1093/nar/26.9.2224

Advantages of 2'-O-methyl oligoribonucleotide probes for detecting RNA targets.

M Majlessi 1, N C Nelson 1, M M Becker 1
PMCID: PMC147516  PMID: 9547284

Abstract

We have compared various kinetic and melting properties of oligoribonucleotide probes containing 2'-O-methylnucleotides or 2'-deoxynucleotides with regard to their use in assays for the detection of nucleic acid targets. 2'-O-Methyl oligoribonucleotide probes bound to RNA targets faster and with much higher melting temperatures (Tm values) than corresponding 2'-deoxy oligoribonucleotide probes at all lengths tested (8-26 bases). Tm values of both probes increased with length up to approximately 19 bases, with maximal differences in Tm between 2'-O-methyl and 2'-deoxy oligoribonucleotide probes observed at lengths of 16 bases or less. In contrast to RNA targets, 2'-O-methyl oligoribonucleotide probes bound more slowly and with the same Tm to DNA targets as corresponding 2'-deoxy oligoribonucleotide probes. Because of their greatly enhanced Tm when bound to RNA, 2'-O-methyl oligoribonucleotide probes can efficiently bind to double-stranded regions of structured RNA molecules. A 17 base 2'-O-methyl oligoribonucleotide probe was able to bind a double-stranded region of rRNA whereas the same 17 base 2'- deoxy oligoribonucleotide probe did not. Due to their enhanced Tm when bound to RNA targets, shorter 2'-O-methyl oligoribonucleotide probes can be used in assays in place of longer 2'-deoxy oligoribonucleotide probes, resulting in enhanced discrimination between matched and mismatched RNA targets. A 12 base 2'-O-methyl oligoribonucleotide probe had the same Tm as a 19 base 2'-deoxy oligoribonucleotide probe when bound to a matched RNA target but exhibited a much larger decrease in Tm than the 2'-deoxy oligoribonucleotide probe when bound to an RNA target containing either 1 or 2 mismatched bases. The increased Tm, faster kinetics of hybridization, ability to bind to structured targets and increased specificity of 2'-O-methyl oligoribonucleotide probes render them superior to corresponding 2'-deoxy oligoribonucleotides for use in assays that detect RNA targets.

Full Text

The Full Text of this article is available as a PDF (123.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chiang M. Y., Chan H., Zounes M. A., Freier S. M., Lima W. F., Bennett C. F. Antisense oligonucleotides inhibit intercellular adhesion molecule 1 expression by two distinct mechanisms. J Biol Chem. 1991 Sep 25;266(27):18162–18171. [PubMed] [Google Scholar]
  2. Cotten M., Oberhauser B., Brunar H., Holzner A., Issakides G., Noe C. R., Schaffner G., Wagner E., Birnstiel M. L. 2'-O-methyl, 2'-O-ethyl oligoribonucleotides and phosphorothioate oligodeoxyribonucleotides as inhibitors of the in vitro U7 snRNP-dependent mRNA processing event. Nucleic Acids Res. 1991 May 25;19(10):2629–2635. doi: 10.1093/nar/19.10.2629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cummins L. L., Owens S. R., Risen L. M., Lesnik E. A., Freier S. M., McGee D., Guinosso C. J., Cook P. D. Characterization of fully 2'-modified oligoribonucleotide hetero- and homoduplex hybridization and nuclease sensitivity. Nucleic Acids Res. 1995 Jun 11;23(11):2019–2024. doi: 10.1093/nar/23.11.2019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. De Mesmaeker A., Altmann K. H., Waldner A., Wendeborn S. Backbone modifications in oligonucleotides and peptide nucleic acid systems. Curr Opin Struct Biol. 1995 Jun;5(3):343–355. doi: 10.1016/0959-440x(95)80096-4. [DOI] [PubMed] [Google Scholar]
  5. Dean N. M., McKay R., Condon T. P., Bennett C. F. Inhibition of protein kinase C-alpha expression in human A549 cells by antisense oligonucleotides inhibits induction of intercellular adhesion molecule 1 (ICAM-1) mRNA by phorbol esters. J Biol Chem. 1994 Jun 10;269(23):16416–16424. [PubMed] [Google Scholar]
  6. Dominski Z., Kole R. Identification and characterization by antisense oligonucleotides of exon and intron sequences required for splicing. Mol Cell Biol. 1994 Nov;14(11):7445–7454. doi: 10.1128/mcb.14.11.7445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ecker D. J., Vickers T. A., Bruice T. W., Freier S. M., Jenison R. D., Manoharan M., Zounes M. Pseudo--half-knot formation with RNA. Science. 1992 Aug 14;257(5072):958–961. doi: 10.1126/science.1502560. [DOI] [PubMed] [Google Scholar]
  8. Hou Y. M., Gamper H. B. Inhibition of tRNA aminoacylation by 2'-O-methyl oligonucleotides. Biochemistry. 1996 Dec 3;35(48):15340–15348. doi: 10.1021/bi9621167. [DOI] [PubMed] [Google Scholar]
  9. Inoue H., Hayase Y., Imura A., Iwai S., Miura K., Ohtsuka E. Synthesis and hybridization studies on two complementary nona(2'-O-methyl)ribonucleotides. Nucleic Acids Res. 1987 Aug 11;15(15):6131–6148. doi: 10.1093/nar/15.15.6131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Inoue H., Hayase Y., Iwai S., Ohtsuka E. Sequence-dependent hydrolysis of RNA using modified oligonucleotide splints and RNase H. FEBS Lett. 1987 May 11;215(2):327–330. doi: 10.1016/0014-5793(87)80171-0. [DOI] [PubMed] [Google Scholar]
  11. Iribarren A. M., Sproat B. S., Neuner P., Sulston I., Ryder U., Lamond A. I. 2'-O-alkyl oligoribonucleotides as antisense probes. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7747–7751. doi: 10.1073/pnas.87.19.7747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Johansson H. E., Belsham G. J., Sproat B. S., Hentze M. W. Target-specific arrest of mRNA translation by antisense 2'-O-alkyloligoribonucleotides. Nucleic Acids Res. 1994 Nov 11;22(22):4591–4598. doi: 10.1093/nar/22.22.4591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lamond A. I., Sproat B. S. Antisense oligonucleotides made of 2'-O-alkylRNA: their properties and applications in RNA biochemistry. FEBS Lett. 1993 Jun 28;325(1-2):123–127. doi: 10.1016/0014-5793(93)81427-2. [DOI] [PubMed] [Google Scholar]
  14. Larrouy B., Boiziau C., Sproat B., Toulmé J. J. RNase H is responsible for the non-specific inhibition of in vitro translation by 2'-O-alkyl chimeric oligonucleotides: high affinity or selectivity, a dilemma to design antisense oligomers. Nucleic Acids Res. 1995 Sep 11;23(17):3434–3440. doi: 10.1093/nar/23.17.3434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lesnik E. A., Guinosso C. J., Kawasaki A. M., Sasmor H., Zounes M., Cummins L. L., Ecker D. J., Cook P. D., Freier S. M. Oligodeoxynucleotides containing 2'-O-modified adenosine: synthesis and effects on stability of DNA:RNA duplexes. Biochemistry. 1993 Aug 3;32(30):7832–7838. doi: 10.1021/bi00081a031. [DOI] [PubMed] [Google Scholar]
  16. Mazumder A., Majlessi M., Becker M. M. A high throughput method to investigate oligodeoxyribonucleotide hybridization kinetics and thermodynamics. Nucleic Acids Res. 1998 Apr 15;26(8):1996–2000. doi: 10.1093/nar/26.8.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Monia B. P., Lesnik E. A., Gonzalez C., Lima W. F., McGee D., Guinosso C. J., Kawasaki A. M., Cook P. D., Freier S. M. Evaluation of 2'-modified oligonucleotides containing 2'-deoxy gaps as antisense inhibitors of gene expression. J Biol Chem. 1993 Jul 5;268(19):14514–14522. [PubMed] [Google Scholar]
  18. Sproat B. S., Lamond A. I., Beijer B., Neuner P., Ryder U. Highly efficient chemical synthesis of 2'-O-methyloligoribonucleotides and tetrabiotinylated derivatives; novel probes that are resistant to degradation by RNA or DNA specific nucleases. Nucleic Acids Res. 1989 May 11;17(9):3373–3386. doi: 10.1093/nar/17.9.3373. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES