Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 May 1;26(9):2120–2124. doi: 10.1093/nar/26.9.2120

Repressor titration: a novel system for selection and stable maintenance of recombinant plasmids.

S G Williams 1, R M Cranenburgh 1, A M Weiss 1, C J Wrighton 1, D J Sherratt 1, J A Hanak 1
PMCID: PMC147518  PMID: 9547269

Abstract

The propagation of recombinant plasmids in bacterial hosts, particularly in Escherichia coli, is essential for the amplification and manipulation of cloned DNA and the production of recombinant proteins. The isolation of bacterial transformants and subsequent stable plasmid maintenance have traditionally been accomplished using plasmid-borne selectable marker genes. Here we describe a novel system that employs plasmid-mediated repressor titration to activate a chromosomal selectable marker, removing the requirement for a plasmid-borne marker gene. A modified E.coli host strain containing a conditionally essential chromosomal gene (kan) under the control of the lac operator/promoter, lac O/P, has been constructed. In the absence of an inducer (allolactose or IPTG) this strain, DH1 lackan , cannot grow on kanamycin-containing media due to the repression of kan expression by LacI protein binding to lac O/P. Transformation with a high copy-number plasmid containing the lac operator, lac O, effectively induces kan expression by titrating LacI from the operator. This strain thus allows the selection of plasmids without antibiotic resistance genes (they need only contain lac O and an origin of replication) which have clear advantages for use as gene therapy vectors. Regulation in the same way of an essential, endogenous bacterial gene will allow the production of recombinant therapeutics devoid of residual antibiotic contamination.

Full Text

The Full Text of this article is available as a PDF (115.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Black D. S., Kelly A. J., Mardis M. J., Moyed H. S. Structure and organization of hip, an operon that affects lethality due to inhibition of peptidoglycan or DNA synthesis. J Bacteriol. 1991 Sep;173(18):5732–5739. doi: 10.1128/jb.173.18.5732-5739.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Drabek D., Guy J., Craig R., Grosveld F. The expression of bacterial nitroreductase in transgenic mice results in specific cell killing by the prodrug CB1954. Gene Ther. 1997 Feb;4(2):93–100. doi: 10.1038/sj.gt.3300366. [DOI] [PubMed] [Google Scholar]
  4. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  5. Hayes F., Sherratt D. J. Recombinase binding specificity at the chromosome dimer resolution site dif of Escherichia coli. J Mol Biol. 1997 Feb 28;266(3):525–537. doi: 10.1006/jmbi.1996.0828. [DOI] [PubMed] [Google Scholar]
  6. Hickson I. D., Gordon R. L., Tomkinson A. E., Emmerson P. T. A temperature sensitive Reca protein of Escherichia coli. Mol Gen Genet. 1981;184(1):68–72. doi: 10.1007/BF00271197. [DOI] [PubMed] [Google Scholar]
  7. Horii Z., Clark A. J. Genetic analysis of the recF pathway to genetic recombination in Escherichia coli K12: isolation and characterization of mutants. J Mol Biol. 1973 Oct 25;80(2):327–344. doi: 10.1016/0022-2836(73)90176-9. [DOI] [PubMed] [Google Scholar]
  8. Jasin M., Schimmel P. Deletion of an essential gene in Escherichia coli by site-specific recombination with linear DNA fragments. J Bacteriol. 1984 Aug;159(2):783–786. doi: 10.1128/jb.159.2.783-786.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kuempel P. L., Henson J. M., Dircks L., Tecklenburg M., Lim D. F. dif, a recA-independent recombination site in the terminus region of the chromosome of Escherichia coli. New Biol. 1991 Aug;3(8):799–811. [PubMed] [Google Scholar]
  10. Leslie N. R., Sherratt D. J. Site-specific recombination in the replication terminus region of Escherichia coli: functional replacement of dif. EMBO J. 1995 Apr 3;14(7):1561–1570. doi: 10.1002/j.1460-2075.1995.tb07142.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lloyd R. G., Buckman C. Identification and genetic analysis of sbcC mutations in commonly used recBC sbcB strains of Escherichia coli K-12. J Bacteriol. 1985 Nov;164(2):836–844. doi: 10.1128/jb.164.2.836-844.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mashko S. V., Podkovyrov S. M., Trukhan M. E., Gorovits R. L., Lebedeva M. I. Ekspressiia gena khloramfenikolatsetiltransferazy pod kontrolem nekotorykh promotorov E. coli i bakteriofaga lambda. Mol Gen Mikrobiol Virusol. 1986 Apr;(4):9–16. [PubMed] [Google Scholar]
  13. Oka A., Sugisaki H., Takanami M. Nucleotide sequence of the kanamycin resistance transposon Tn903. J Mol Biol. 1981 Apr 5;147(2):217–226. doi: 10.1016/0022-2836(81)90438-1. [DOI] [PubMed] [Google Scholar]
  14. Pang A. S. Production of antibodies against Bacillus thuringiensis delta-endotoxin by injecting its plasmids. Biochem Biophys Res Commun. 1994 Aug 15;202(3):1227–1234. doi: 10.1006/bbrc.1994.2062. [DOI] [PubMed] [Google Scholar]
  15. Sadler J. R., Tecklenburg M., Betz J. L., Goeddel D. V., Yansura D. G., Caruthers M. H. Cloning of chemically synthesized lactose operators. Gene. 1977 Jul;1(5-6):305–321. doi: 10.1016/0378-1119(77)90036-1. [DOI] [PubMed] [Google Scholar]
  16. Sato Y., Roman M., Tighe H., Lee D., Corr M., Nguyen M. D., Silverman G. J., Lotz M., Carson D. A., Raz E. Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science. 1996 Jul 19;273(5273):352–354. doi: 10.1126/science.273.5273.352. [DOI] [PubMed] [Google Scholar]
  17. Skogman S. G., Nilsson J. Temperature-dependent retention of a tryptophan-operon-bearing plasmid in Escherichia coli. Gene. 1984 Nov;31(1-3):117–122. doi: 10.1016/0378-1119(84)90201-4. [DOI] [PubMed] [Google Scholar]
  18. Valera A., Perales J. C., Hatzoglou M., Bosch F. Expression of the neomycin-resistance (neo) gene induces alterations in gene expression and metabolism. Hum Gene Ther. 1994 Apr;5(4):449–456. doi: 10.1089/hum.1994.5.4-449. [DOI] [PubMed] [Google Scholar]
  19. WILLSON C., PERRIN D., COHN M., JACOB F., MONOD J. NON-INDUCIBLE MUTANTS OF THE REGULATOR GENE IN THE "LACTOSE" SYSTEM OF ESCHERICHIA COLI. J Mol Biol. 1964 Apr;8:582–592. doi: 10.1016/s0022-2836(64)80013-9. [DOI] [PubMed] [Google Scholar]
  20. Wang M. D., Buckley L., Berg C. M. Cloning of genes that suppress an Escherichia coli K-12 alanine auxotroph when present in multicopy plasmids. J Bacteriol. 1987 Dec;169(12):5610–5614. doi: 10.1128/jb.169.12.5610-5614.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Winans S. C., Elledge S. J., Krueger J. H., Walker G. C. Site-directed insertion and deletion mutagenesis with cloned fragments in Escherichia coli. J Bacteriol. 1985 Mar;161(3):1219–1221. doi: 10.1128/jb.161.3.1219-1221.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Zengel J. M., Lindahl L. High-efficiency, temperature-sensitive suppression of amber mutations in Escherichia coli. J Bacteriol. 1981 Jan;145(1):459–465. doi: 10.1128/jb.145.1.459-465.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES