Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 May 1;26(9):2161–2167. doi: 10.1093/nar/26.9.2161

Characterisation of Leishmania telomeres reveals unusual telomeric repeats and conserved telomere-associated sequence.

G Fu 1, D C Barker 1
PMCID: PMC147527  PMID: 9547275

Abstract

Characterisation of the telomeres of Leishmania is important for understanding many aspects of the parasitic life of this primitive protozoan and for the completion of the physical map and sequencing of the genome. After sequencing more than 300 telomere-derived clones from Leishmania braziliensis and Leishmania major, a conserved 100 bp sequence was identified immediately adjacent to the telomere at the chromosome end and was named LCTAS (Leishmania conserved telomere-associated sequence). The LCTAS contains two conserved sequence boxes, and is present in all Leishmania species studied. The organisation of the LCTAS in the telomeric region differs between L. braziliensis and L. major: in L. major the LCTASs are tandemly repeated, while in L. braziliensis the LCTAS is present as a single copy per end. Two additional TASs with 1.6 kb and 274 bp repeat structures, which are apparently different to LCTAS, were isolated and mapped onto a L. braziliensis 250 kb multicopy minichromosome and the L. major chromosome 1, respectively. An unusual feature in L. braziliensis is that the telomeric repeats are often comprised of a novel tandem repeat CCCTAACCCGTGGA. A 'slippage' mechanism for LCTAS formation is proposed in this study as an alternative way for the synthesis and maintenance of telomeres and subtelomere regions.

Full Text

The Full Text of this article is available as a PDF (238.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blackburn E. H., Challoner P. B. Identification of a telomeric DNA sequence in Trypanosoma brucei. Cell. 1984 Feb;36(2):447–457. doi: 10.1016/0092-8674(84)90238-1. [DOI] [PubMed] [Google Scholar]
  2. Borst P., Gommers-Ampt J. H., Ligtenberg M. J., Rudenko G., Kieft R., Taylor M. C., Blundell P. A., van Leeuwen F. Control of antigenic variation in African trypanosomes. Cold Spring Harb Symp Quant Biol. 1993;58:105–114. doi: 10.1101/sqb.1993.058.01.014. [DOI] [PubMed] [Google Scholar]
  3. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dore E., Pace T., Ponzi M., Picci L., Frontali C. Organization of subtelomeric repeats in Plasmodium berghei. Mol Cell Biol. 1990 May;10(5):2423–2427. doi: 10.1128/mcb.10.5.2423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eid J. E., Sollner-Webb B. ST-1, a 39-kilodalton protein in Trypanosoma brucei, exhibits a dual affinity for the duplex form of the 29-base-pair subtelomeric repeat and its C-rich strand. Mol Cell Biol. 1995 Jan;15(1):389–397. doi: 10.1128/mcb.15.1.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eid J. E., Sollner-Webb B. ST-2, a telomere and subtelomere duplex and G-strand binding protein activity in Trypanosoma brucei. J Biol Chem. 1997 Jun 6;272(23):14927–14936. doi: 10.1074/jbc.272.23.14927. [DOI] [PubMed] [Google Scholar]
  7. Ellis J., Crampton J. Characterisation of a simple, highly repetitive DNA sequence from the parasite Leishmania donovani. Mol Biochem Parasitol. 1988 May;29(1):9–17. doi: 10.1016/0166-6851(88)90114-4. [DOI] [PubMed] [Google Scholar]
  8. Eresh S., Mendoza-Leòn A., Barker D. C. A small chromosome of Leishmania (Viannia) braziliensis contains multicopy sequences which are complex specific. Acta Trop. 1993 Oct;55(1-2):33–46. doi: 10.1016/0001-706x(93)90046-e. [DOI] [PubMed] [Google Scholar]
  9. Fu G., Barker D. C. Rapid cloning of telomere-associated sequence using primer-tagged amplification. Biotechniques. 1998 Mar;24(3):386–390. doi: 10.2144/98243bm10. [DOI] [PubMed] [Google Scholar]
  10. Grondin K., Papadopoulou B., Ouellette M. Homologous recombination between direct repeat sequences yields P-glycoprotein containing amplicons in arsenite resistant Leishmania. Nucleic Acids Res. 1993 Apr 25;21(8):1895–1901. doi: 10.1093/nar/21.8.1895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ivens A. C., Blackwell J. M. Unravelling the Leishmania genome. Curr Opin Genet Dev. 1996 Dec;6(6):704–710. doi: 10.1016/s0959-437x(96)80024-4. [DOI] [PubMed] [Google Scholar]
  12. Kirk K. E., Harmon B. P., Reichardt I. K., Sedat J. W., Blackburn E. H. Block in anaphase chromosome separation caused by a telomerase template mutation. Science. 1997 Mar 7;275(5305):1478–1481. doi: 10.1126/science.275.5305.1478. [DOI] [PubMed] [Google Scholar]
  13. Lodes M. J., Merlin G., deVos T., Ghosh A., Madhubala R., Myler P. J., Stuart K. Increased expression of LD1 genes transcribed by RNA polymerase I in Leishmania donovani as a result of duplication into the rRNA gene locus. Mol Cell Biol. 1995 Dec;15(12):6845–6853. doi: 10.1128/mcb.15.12.6845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Louis E. J., Naumova E. S., Lee A., Naumov G., Haber J. E. The chromosome end in yeast: its mosaic nature and influence on recombinational dynamics. Genetics. 1994 Mar;136(3):789–802. doi: 10.1093/genetics/136.3.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pace T., Ponzi M., Dore E., Frontali C. Telomeric motifs are present in a highly repetitive element in the Plasmodium berghei genome. Mol Biochem Parasitol. 1987 Jun;24(2):193–202. doi: 10.1016/0166-6851(87)90106-x. [DOI] [PubMed] [Google Scholar]
  16. Pagès M., Bastien P., Veas F., Rossi V., Bellis M., Wincker P., Rioux J. A., Roizès G. Chromosome size and number polymorphisms in Leishmania infantum suggest amplification/deletion and possible genetic exchange. Mol Biochem Parasitol. 1989 Sep;36(2):161–168. doi: 10.1016/0166-6851(89)90188-6. [DOI] [PubMed] [Google Scholar]
  17. Pardue M. L., Danilevskaya O. N., Lowenhaupt K., Slot F., Traverse K. L. Drosophila telomeres: new views on chromosome evolution. Trends Genet. 1996 Feb;12(2):48–52. doi: 10.1016/0168-9525(96)81399-0. [DOI] [PubMed] [Google Scholar]
  18. Ravel C., Wincker P., Bastien P., Blaineau C., Pagès M. A polymorphic minisatellite sequence in the subtelomeric regions of chromosomes I and V in Leishmania infantum. Mol Biochem Parasitol. 1995 Oct;74(1):31–41. doi: 10.1016/0166-6851(95)02480-8. [DOI] [PubMed] [Google Scholar]
  19. Van der Ploeg L. H., Liu A. Y., Borst P. Structure of the growing telomeres of Trypanosomes. Cell. 1984 Feb;36(2):459–468. doi: 10.1016/0092-8674(84)90239-3. [DOI] [PubMed] [Google Scholar]
  20. Weiden M., Osheim Y. N., Beyer A. L., Van der Ploeg L. H. Chromosome structure: DNA nucleotide sequence elements of a subset of the minichromosomes of the protozoan Trypanosoma brucei. Mol Cell Biol. 1991 Aug;11(8):3823–3834. doi: 10.1128/mcb.11.8.3823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wicky C., Rose A. M. The role of chromosome ends during meiosis in Caenorhabditis elegans. Bioessays. 1996 Jun;18(6):447–452. doi: 10.1002/bies.950180606. [DOI] [PubMed] [Google Scholar]
  22. Wicky C., Villeneuve A. M., Lauper N., Codourey L., Tobler H., Müller F. Telomeric repeats (TTAGGC)n are sufficient for chromosome capping function in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):8983–8988. doi: 10.1073/pnas.93.17.8983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wincker P., Ravel C., Blaineau C., Pages M., Jauffret Y., Dedet J. P., Bastien P. The Leishmania genome comprises 36 chromosomes conserved across widely divergent human pathogenic species. Nucleic Acids Res. 1996 May 1;24(9):1688–1694. doi: 10.1093/nar/24.9.1688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zakian V. A. Telomeres: beginning to understand the end. Science. 1995 Dec 8;270(5242):1601–1607. doi: 10.1126/science.270.5242.1601. [DOI] [PubMed] [Google Scholar]
  25. van Leeuwen F., Wijsman E. R., Kuyl-Yeheskiely E., van der Marel G. A., van Boom J. H., Borst P. The telomeric GGGTTA repeats of Trypanosoma brucei contain the hypermodified base J in both strands. Nucleic Acids Res. 1996 Jul 1;24(13):2476–2482. doi: 10.1093/nar/24.13.2476. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES