Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1977 Dec;21:285–292. doi: 10.1289/ehp.7721285

Metabolism and toxicology of pyrethroids with dihalovinyl substituents.

L O Ruzo, J E Casida
PMCID: PMC1475316  PMID: 612453

Abstract

Replacement of the photolabile and biodegradable isobutenyl substituent of pyrethroids with a dihalovinyl group often leads to improved insecticidal potency and enhanced photostability. This type of structural modification does not greatly alter the ease of detoxification in mammals since other sites in the molecule undergo metabolic attack. The available toxicological information on dihalovinyl pyrethroids indicates that they are suitable replacements for other insecticides with less favorable persistence and toxicological characteristics.

Full text

PDF
285

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown D. G., Bodenstein O. F., Norton S. J. Halopyrethroids. II. A difluoropyrethroid. J Agric Food Chem. 1975 Jan-Feb;23(1):115–117. doi: 10.1021/jf60197a031. [DOI] [PubMed] [Google Scholar]
  2. Brown D. G., Bodenstein O. F., Norton S. J. New potent pyrethroid, bromethrin. J Agric Food Chem. 1973 Sep-Oct;21(5):767–769. doi: 10.1021/jf60189a044. [DOI] [PubMed] [Google Scholar]
  3. Casida J. E., Ueda K., Gaughan L. C., Jao L. T., Soderlund D. M. Structure-biodegradability relationships in pyrethroid insecticides. Arch Environ Contam Toxicol. 1975;3(4):491–500. doi: 10.1007/BF02220819. [DOI] [PubMed] [Google Scholar]
  4. Elliott M., Farnham A. W., Janes N. F., Needham P. H., Pulman D. A. Potent pyrethroid insecticides from modified cyclopropane acids. Nature. 1973 Aug 17;244(5416):456–457. doi: 10.1038/244456a0. [DOI] [PubMed] [Google Scholar]
  5. Elliott M., Farnham A. W., Janes N. F., Needham P. H., Pulman D. A., Stevenson J. H. A photostable pyrethroid. Nature. 1973 Nov 16;246(5429):169–170. doi: 10.1038/246169a0. [DOI] [PubMed] [Google Scholar]
  6. Elliott M., Farnham A. W., Janes N. F., Needham P. H., Pulman D. A. Synthetic insecticide with a new order of activity. Nature. 1974 Apr 19;248(5450):710–711. doi: 10.1038/248710a0. [DOI] [PubMed] [Google Scholar]
  7. Elliott M., Janes N. F., Pulman D. A., Gaughan L. C., Unai T., Casida J. E. Radiosynthesis and metabolism in rats of the 1R isomers of the insecticide permethrin. J Agric Food Chem. 1976 Mar-Apr;24(2):270–276. doi: 10.1021/jf60204a007. [DOI] [PubMed] [Google Scholar]
  8. Elliott M. The relationship between the structure and the activity of pyrethroids. Bull World Health Organ. 1971;44(1-3):315–324. [PMC free article] [PubMed] [Google Scholar]
  9. Gaughan L. C., Unai T., Casida J. E. Permethrin metabolism in rats. J Agric Food Chem. 1976 Jan-Feb;25(1):9–17. doi: 10.1021/jf60209a005. [DOI] [PubMed] [Google Scholar]
  10. Miyamoto J. Degradation, metabolism and toxicity of synthetic pyrethroids. Environ Health Perspect. 1976 Apr;14:15–28. doi: 10.1289/ehp.761415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Tomatis L., Turusov V., Charles R. T., Boicchi M. Effect of long-term exposure to 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene, to 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane, and to the two chemicals combined on CF-1 mice. J Natl Cancer Inst. 1974 Mar;52(3):883–891. doi: 10.1093/jnci/52.3.883. [DOI] [PubMed] [Google Scholar]
  12. Ueda K., Gaughan L. C., Casida J. E. Photodecomposition of resmethrin and related pyrethroids. J Agric Food Chem. 1974 Mar-Apr;22(2):212–220. doi: 10.1021/jf60192a014. [DOI] [PubMed] [Google Scholar]
  13. Unai T., Casida J. E. Synthesis of isomeric 3-(2,2-dichlorovinyl)-2-hydroxymethyl-2-methylcyclopropanecarboxylic acids and other permethrin metabolites. J Agric Food Chem. 1977 Sep-Oct;25(5):979–987. doi: 10.1021/jf60213a006. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES