Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1977 Dec;21:215–219. doi: 10.1289/ehp.7721215

Oxidative metabolism in fetal rat brain during maternal halothane anesthesia.

R C Vannucci, J W Wolf
PMCID: PMC1475326  PMID: 612447

Abstract

The present study examines the effects of maternally administered halothane on fetal brain metabolism as determined by direct tissue analysis. Term pregnant rats were paralyzed, ventilated, and administered halothane in concentrations of 0.4, 1, or 2%. For comparison of fetal response to anesthetic agents, other maternal rats were administered pentobarbital (50 or 200 mg/kg). Dams receiving 0.4% halothane or 50 mg/kg pentobarbital remained normotensive, whereas 2% halothane or 200 mg/kg pentobarbital led to a 65% reduction in maternal blood pressure and a 3-fold increase in blood lactate. Fetal blood lactate tended to parallel the maternal lactacidemia. Fetuses of dams anesthetized with 0.4% halothane or 50 mg/kg pentobarbital exhibited concentrations of cerebral metabolities comparable to those of control animals. A 2% halothane level was associated with metabolic disturbances in fetal brain, indicative of cerebral hypoxia. Pentobarbital 200 mg/kg, although producing maternal hypotension and lactacidemia to a degree similar to 2% halothane, preserved a more optimal fetal cerebral energy state as reflected in a lower lactate/pyruvate ratio and normal ATP. The metabolic influence of pentobarbital may serve to protect the hypoxic fetus from neurological damage, an effect apparently not shared by maternally administered halothane.

Full text

PDF
215

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Campbell A. G., Dawes G. S., Fishman A. P., Hyman A. I. Regional redistribution of blood flow in the mature fetal lamb. Circ Res. 1967 Aug;21(2):229–235. doi: 10.1161/01.res.21.2.229. [DOI] [PubMed] [Google Scholar]
  2. Cockburn F., Daniel S. S., Dawes G. S., James L. S., Myers R. E., Nienann W., Rodriguez de Curet H., Ross B. B. The effect of pentobarbital anesthesia on resuscitation and brain damage in fetal rhesus monkeys asphyxiated on delivery. J Pediatr. 1969 Aug;75(2):281–291. doi: 10.1016/s0022-3476(69)80399-9. [DOI] [PubMed] [Google Scholar]
  3. DAWES G. S., MOTT J. C., SHELLEY H. J. The importance of cardiac glycogen for the maintenance of life in foetal lambs and newborn animals during anoxia. J Physiol. 1959 Jun 11;146(3):516–538. doi: 10.1113/jphysiol.1959.sp006208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Eng M., Bonica J. J., Akamatsu T. J., Berges P. U., Yuen D., Ueland K. Maternal and fetal responses to halothane in pregnant monkeys. Acta Anaesthesiol Scand. 1975;19(2):154–158. doi: 10.1111/j.1399-6576.1975.tb05235.x. [DOI] [PubMed] [Google Scholar]
  5. Goodlin R. C., Lloyd D. Use of drugs to protect against fetal asphyxia. Am J Obstet Gynecol. 1970 May 15;107(2):227–231. doi: 10.1016/0002-9378(70)90590-9. [DOI] [PubMed] [Google Scholar]
  6. Harp J. R., Nilsson L., Siesjö B. K. The effect of halothane anaesthesia upon cerebral oxygen consumption in the rat. Acta Anaesthesiol Scand. 1976;20(1):83–90. doi: 10.1111/j.1399-6576.1976.tb05013.x. [DOI] [PubMed] [Google Scholar]
  7. Nilsson L., Siesjö B. K. The effect of anesthetics upon labile phosphates and upon extra- and intracellular lactate, pyruvate and bicarbonate concentrations in the rat brain. Acta Physiol Scand. 1970 Oct;80(2):235–248. doi: 10.1111/j.1748-1716.1970.tb04787.x. [DOI] [PubMed] [Google Scholar]
  8. Palahniuk R. J., Shnider S. M. Maternal and fetal cardiovascular and acid-base changes during halothane and isoflurane anesthesia in the pregnant ewe. Anesthesiology. 1974 Nov;41(5):462–472. doi: 10.1097/00000542-197411000-00010. [DOI] [PubMed] [Google Scholar]
  9. RAVENTOS J. The action of fluothane; a new volatile anaesthetic. Br J Pharmacol Chemother. 1956 Dec;11(4):394–410. doi: 10.1111/j.1476-5381.1956.tb00007.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. SHERIDAN C. A., ROBSON J. G. Fluothane in obstetrical anaesthesia. Can Anaesth Soc J. 1959 Oct;6:365–374. doi: 10.1007/BF03021285. [DOI] [PubMed] [Google Scholar]
  11. SWANN H. G., CHRISTIAN J. J., HAMILTON C. The process of anoxic death in newborn pups. Surg Gynecol Obstet. 1954 Jul;99(1):5–8. [PubMed] [Google Scholar]
  12. Vannucci R. C., Duffy T. E. Cerebral metabolism in newborn dogs during reversible asphyxia. Ann Neurol. 1977 Jun;1(6):528–534. doi: 10.1002/ana.410010604. [DOI] [PubMed] [Google Scholar]
  13. Vannucci R. C., Duffy T. E. Influence of birth on carbohydrate and energy metabolism in rat brain. Am J Physiol. 1974 Apr;226(4):933–940. doi: 10.1152/ajplegacy.1974.226.4.933. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES