Abstract
The metabolism of the chlorinated ethylenes may be explained by the formation of chloroethylene epoxides as the first intermediate products. The evidence indicates that these epoxides rearrange with migration of chlorine to form chloroacetaldehydes and chloroacetyl chlorides. Thus, monochloroacetic acid, chloral hydrate, and trichloroacetic acid have been found in reaction mixtures of 1,1-dichloroethylene, trichloroethylene, and tetrachloroethylene, respectively, with rat liver microsomal systems. Rearrangements of the chloroethylene, and glycols formed from the epoxides by hydration may also take place, but would appear, at least in the case of 1,1-dichloroethylene, to be quantitatively less important. The literature on the metabolism of chlorinated ethylenes and its relationship to their toxicity is reviewed.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bartsch H., Malaveille C., Montesano R., Tomatis L. Tissue-mediated mutagenicity of vinylidene chloride and 2-chlorobutadiene in Salmonella typhimurium. Nature. 1975 Jun 19;255(5510):641–643. doi: 10.1038/255641a0. [DOI] [PubMed] [Google Scholar]
- Bonse G., Urban T., Reichert D., Henschler D. Chemical reactivity, metabolic oxirane formation and biological reactivity of chlorinated ethylenes in the isolated perfused rat liver preparation. Biochem Pharmacol. 1975 Oct 1;24(19):1829–1834. doi: 10.1016/0006-2952(75)90468-2. [DOI] [PubMed] [Google Scholar]
- Byington K. H., Leibman K. C. Metabolism of trichloroethylene in liver microsomes. II. Identification of the reaction product as chloral hydrate. Mol Pharmacol. 1965 Nov;1(3):247–254. [PubMed] [Google Scholar]
- Carlson G. P. Enhancement of the hepatotoxicity of trichloroethylene by inducers of drug metabolism. Res Commun Chem Pathol Pharmacol. 1974 Mar;7(3):637–640. [PubMed] [Google Scholar]
- Cole W. J., Mitchell R. G., Salamonsen R. F. Isolation, characterization and quantitation of chloral hydrate as a transient metabolite of trichloroethylene in man using electron capture gas chromatography and mass fragmentography. J Pharm Pharmacol. 1975 Mar;27(3):167–171. doi: 10.1111/j.2042-7158.1975.tb09431.x. [DOI] [PubMed] [Google Scholar]
- DANIEL J. W. THE METABOLISM OF 36C1-LABELLED TRICHLOROETHYLENE AND TETRACHLOROETHYLENE IN THE RAT. Biochem Pharmacol. 1963 Aug;12:795–802. doi: 10.1016/0006-2952(63)90109-6. [DOI] [PubMed] [Google Scholar]
- DEFALQUE R. J. Pharmacology and toxicology of trichloroethylene. A critical review of the literature. Clin Pharmacol Ther. 1961 Sep-Oct;2:665–688. doi: 10.1002/cpt196125665. [DOI] [PubMed] [Google Scholar]
- FRIEDMAN P. J., COOPER J. R. The role of alcohol dehydrogenase in the metabolism of chloral hydrate. J Pharmacol Exp Ther. 1960 Aug;129:373–376. [PubMed] [Google Scholar]
- Greim H., Bonse G., Radwan Z., Reichert D., Henschler D. Mutagenicity in vitro and potential carcinogenicity of chlorinated ethylenes as a function of metabolic oxiran formation. Biochem Pharmacol. 1975 Nov 1;24(21):2013–2017. doi: 10.1016/0006-2952(75)90396-2. [DOI] [PubMed] [Google Scholar]
- Haley T. J. Vinylidene chloride: a review of the literature. Clin Toxicol. 1975;8(6):633–643. doi: 10.3109/15563657508990088. [DOI] [PubMed] [Google Scholar]
- Ikeda M., Imanura T. Biological half-life of trichloroethylene and tetrachloroethylene in human subjects. Int Arch Arbeitsmed. 1973 Jul 10;31(3):209–224. doi: 10.1007/BF00539241. [DOI] [PubMed] [Google Scholar]
- Ikeda M., Otsuji H., Imamura T., Komoike Y. Urinary excretion of total trichloro-compounds, trichloroethanol, and trichloroacetic acid as a measure of exposure to trichloroethylene and tetrachloroethylene. Br J Ind Med. 1972 Jul;29(3):328–333. doi: 10.1136/oem.29.3.328. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaeger R. J., Conolly R. B., Murphy S. D. Diurnal variation of hepatic glutathione concentration and its correlation with 1,1-dichloroethylene inhalation toxicity in rats. Res Commun Chem Pathol Pharmacol. 1973 Sep;6(2):465–471. [PubMed] [Google Scholar]
- Jaeger R. J., Conolly R. B., Murphy S. D. Effect of 18 hr fast and glutathione depletion on 1,1-dichloroethylene-induced hepatotoxicity and lethality in rats. Exp Mol Pathol. 1974 Apr;20(2):187–198. doi: 10.1016/0014-4800(74)90053-7. [DOI] [PubMed] [Google Scholar]
- Jaeger R. J., Conolly R. B., Reynolds E. S., Murphy S. D. Biochemical toxicology of unsaturated halogenated monomers. Environ Health Perspect. 1975 Jun;11:121–128. doi: 10.1289/ehp.7511121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jerina D. M., Daly J. W., Witkop B., Zaltzman-Nirenberg P., Udenfriend S. The role of arene oxide-oxepin systems in the metabolism of aromatic substrates. 3. Formation of 1,2-naphthalene oxide from naphthalene by liver microsomes. J Am Chem Soc. 1968 Nov 6;90(23):6525–6527. doi: 10.1021/ja01025a058. [DOI] [PubMed] [Google Scholar]
- Kelley J. M., Brown B. R., Jr Biotransformation of trichloroethylene. Int Anesthesiol Clin. 1974 Summer;12(2):85–92. doi: 10.1097/00004311-197412020-00010. [DOI] [PubMed] [Google Scholar]
- Kimmerle G., Eben A. Metabolism, excretion and toxicology of trichloroethylene after inhalation. 1. Experimental exposure on rats. Arch Toxikol. 1973;30(2):115–126. doi: 10.1007/BF02425929. [DOI] [PubMed] [Google Scholar]
- Leibman K. C. Effects of metyrapone on liver microsomal drug oxidations. Mol Pharmacol. 1969 Jan;5(1):1–9. [PubMed] [Google Scholar]
- Leibman K. C., McAllister W. J., Jr Metabolism of trichloroethylene in liver microsomes. 3. Induction of the enzymic activity and its effect on excretion of metabolites. J Pharmacol Exp Ther. 1967 Sep;157(3):574–580. [PubMed] [Google Scholar]
- Leibman K. C. Metabolism of trichloroethylene in liver microsomes. I. Characteristics of the reaction. Mol Pharmacol. 1965 Nov;1(3):239–246. [PubMed] [Google Scholar]
- Leibman K. C., Ortiz E. Epoxide intermediates in microsomal oxidation of olefins to glycols. J Pharmacol Exp Ther. 1970 Jun;173(2):242–246. [PubMed] [Google Scholar]
- Maynert E. W., Foreman R. L., Watabe T. Epoxides as obligatory intermediates in the metabolism of olefins to glycols. J Biol Chem. 1970 Oct 25;245(20):5234–5238. [PubMed] [Google Scholar]
- Moslen M. T., Reynolds E. S., Szabo S. Enhancement of the metabolism and hepatotoxicity of trichloroethylene and perchloroethylene. Biochem Pharmacol. 1977 Mar 1;26(5):369–375. doi: 10.1016/0006-2952(77)90193-9. [DOI] [PubMed] [Google Scholar]
- Ogata M., Takatsuka Y., Tomokuni K. Excretion of organic chlorine compounds in the urine of persons exposed to vapours of trichloroethylene and tetrachloroethylene. Br J Ind Med. 1971 Oct;28(4):386–391. doi: 10.1136/oem.28.4.386. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reynolds E. S., Moslen M. T., Szabo S., Jaeger R. J., Murphy S. D. Hepatotoxicity of vinyl chloride and 1,1-dichloroethylene. Role of mixed function oxidase system. Am J Pathol. 1975 Oct;81(1):219–236. [PMC free article] [PubMed] [Google Scholar]
- Van Duuren B. L., Banerjee S. Covalent interaction of metabolites of the carcinogen trichloroethylene in rat hepatic microsomes. Cancer Res. 1976 Jul;36(7 Pt 1):2419–2422. [PubMed] [Google Scholar]
- Viola P. L., Bigotti A., Caputo A. Oncogenic response of rat skin, lungs, and bones to vinyl chloride. Cancer Res. 1971 May;31(5):516–522. [PubMed] [Google Scholar]
- YLLNER S. Urinary metabolites of 14C-tetrachloroethylene in mice. Nature. 1961 Aug 19;191:820–820. doi: 10.1038/191820a0. [DOI] [PubMed] [Google Scholar]
