Abstract
In order to study base pairing properties of the amide group in DNA duplexes, a nucleoside analog, 1-(2'-deoxy-beta-D-ribofuranosyl)pyrrole-3-carboxamide, was synthesized by a new route from the ester, methyl 1-(2'-deoxy-3',5'-di-O-p -toluoyl-beta-D-erythro-pentofuranosyl)pyrrole-3-carboxylate, obtained from the coupling reaction between 1-chloro-2-deoxy-3,5-di-O -toluoyl-d-erythropentofuranose and methyl pyrrole-3-carboxylate by treatment with dimethylaluminum amide. 1-(2'-Deoxy-beta-D-ribofuranosyl)pyrrole-3-carboxamide was incorporated into a series of oligodeoxyribonucleotides by solid-phase phosphoramidite technology. The corresponding oligodeoxyribonucleotides with 3-nitropyrrole in the same position in the sequence were synthesized for UV comparison of helix-coil transitions. The thermal melting studies indicate that pyrrole-3-carboxamide, which could conceptually adopt either a dA-like or a dI-like hydrogen bond conformation, pairs with significantly higher affinity to T than to dC. Pyrrole-3-carboxamide further resembles dA in the relative order of its base pairing preferences (T >dG >dA >dC). Theoretical calculations on the model compound N-methylpyrrole-3-carboxamide using density functional theory show little difference in the preference for a syntau versus anti conformation about the bond from pyrrole C3 to the amide carbonyl. The amide groups in both the minimized antitau and syntau conformations are twisted out of the plane of the pyrrole ring by 6-14 degrees. This twist may be one source of destabilization when the amide group is placed in the helix. Another contribution to the difference in stability between the base pairs of pyrrole-3-carboxamide with T and pyrrole-3-carboxamide with C may be the presence of a hydrogen bond in the former involving an acidic proton (N3-H of T).
Full Text
The Full Text of this article is available as a PDF (153.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barawkar D. A., Ganesh K. N. Fluorescent d(CGCGAATTCGCG): characterization of major groove polarity and study of minor groove interactions through a major groove semantophore conjugate. Nucleic Acids Res. 1995 Jan 11;23(1):159–164. doi: 10.1093/nar/23.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A Gen Phys. 1988 Sep 15;38(6):3098–3100. doi: 10.1103/physreva.38.3098. [DOI] [PubMed] [Google Scholar]
- Bergstrom D. E., Zhang P., Johnson W. T. Comparison of the base pairing properties of a series of nitroazole nucleobase analogs in the oligodeoxyribonucleotide sequence 5'-d(CGCXAATTYGCG)-3'. Nucleic Acids Res. 1997 May 15;25(10):1935–1942. doi: 10.1093/nar/25.10.1935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dickerson R. E., Drew H. R. Structure of a B-DNA dodecamer. II. Influence of base sequence on helix structure. J Mol Biol. 1981 Jul 15;149(4):761–786. doi: 10.1016/0022-2836(81)90357-0. [DOI] [PubMed] [Google Scholar]
- Drew H. R., Dickerson R. E. Structure of a B-DNA dodecamer. III. Geometry of hydration. J Mol Biol. 1981 Sep 25;151(3):535–556. doi: 10.1016/0022-2836(81)90009-7. [DOI] [PubMed] [Google Scholar]
- Etter M. C., MacDonald J. C., Bernstein J. Graph-set analysis of hydrogen-bond patterns in organic crystals. Acta Crystallogr B. 1990 Apr 1;46(Pt 2):256–262. doi: 10.1107/s0108768189012929. [DOI] [PubMed] [Google Scholar]
- Friedman R. A., Honig B. The electrostatic contribution to DNA base-stacking interactions. Biopolymers. 1992 Feb;32(2):145–159. doi: 10.1002/bip.360320205. [DOI] [PubMed] [Google Scholar]
- Gralla J., Crothers D. M. Free energy of imperfect nucleic acid helices. 3. Small internal loops resulting from mismatches. J Mol Biol. 1973 Aug 5;78(2):301–319. doi: 10.1016/0022-2836(73)90118-6. [DOI] [PubMed] [Google Scholar]
- Hoops G. C., Zhang P., Johnson W. T., Paul N., Bergstrom D. E., Davisson V. J. Template directed incorporation of nucleotide mixtures using azole-nucleobase analogs. Nucleic Acids Res. 1997 Dec 15;25(24):4866–4871. doi: 10.1093/nar/25.24.4866. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jin R., Breslauer K. J. Characterization of the minor groove environment in a drug-DNA complex: bisbenzimide bound to the poly[d(AT)].poly[d(AT)]duplex. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8939–8942. doi: 10.1073/pnas.85.23.8939. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson W. T., Zhang P., Bergstrom D. E. The synthesis and stability of oligodeoxyribonucleotides containing the deoxyadenosine mimic 1-(2'-deoxy-beta-D-ribofuranosyl)imidazole-4-carboxamide. Nucleic Acids Res. 1997 Feb 1;25(3):559–567. doi: 10.1093/nar/25.3.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kollman P. A., Weiner P. K., Dearing A. Studies of nucleotide conformations and interactions. The relative stabilities of double-helical B-DNA sequence isomers. Biopolymers. 1981 Dec;20(12):2583–2621. doi: 10.1002/bip.1981.360201208. [DOI] [PubMed] [Google Scholar]
- Kopka M. L., Fratini A. V., Drew H. R., Dickerson R. E. Ordered water structure around a B-DNA dodecamer. A quantitative study. J Mol Biol. 1983 Jan 5;163(1):129–146. doi: 10.1016/0022-2836(83)90033-5. [DOI] [PubMed] [Google Scholar]
- Kyogoku Y., Lord R. C., Rich A. The effect of substituents on the hydrogen bonding of adenine and uracil derivatives. Proc Natl Acad Sci U S A. 1967 Feb;57(2):250–257. doi: 10.1073/pnas.57.2.250. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lane A. N., Jenkins T. C., Brown T., Neidle S. Interaction of berenil with the EcoRI dodecamer d(CGCGAATTCGCG)2 in solution studied by NMR. Biochemistry. 1991 Feb 5;30(5):1372–1385. doi: 10.1021/bi00219a030. [DOI] [PubMed] [Google Scholar]
- Law S. M., Eritja R., Goodman M. F., Breslauer K. J. Spectroscopic and calorimetric characterizations of DNA duplexes containing 2-aminopurine. Biochemistry. 1996 Sep 24;35(38):12329–12337. doi: 10.1021/bi9614545. [DOI] [PubMed] [Google Scholar]
- Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter. 1988 Jan 15;37(2):785–789. doi: 10.1103/physrevb.37.785. [DOI] [PubMed] [Google Scholar]
- Leonard G. A., Booth E. D., Brown T. Structural and thermodynamic studies on the adenine.guanine mismatch in B-DNA. Nucleic Acids Res. 1990 Oct 11;18(19):5617–5623. doi: 10.1093/nar/18.19.5617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liepinsh E., Otting G., Wüthrich K. NMR observation of individual molecules of hydration water bound to DNA duplexes: direct evidence for a spine of hydration water present in aqueous solution. Nucleic Acids Res. 1992 Dec 25;20(24):6549–6553. doi: 10.1093/nar/20.24.6549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loakes D., Brown D. M. 5-Nitroindole as an universal base analogue. Nucleic Acids Res. 1994 Oct 11;22(20):4039–4043. doi: 10.1093/nar/22.20.4039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loakes D., Brown D. M., Linde S., Hill F. 3-Nitropyrrole and 5-nitroindole as universal bases in primers for DNA sequencing and PCR. Nucleic Acids Res. 1995 Jul 11;23(13):2361–2366. doi: 10.1093/nar/23.13.2361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marky L. A., Blumenfeld K. S., Kozlowski S., Breslauer K. J. Salt-dependent conformational transitions in the self-complementary deoxydodecanucleotide d(CGCAATTCGCG): evidence for hairpin formation. Biopolymers. 1983 Apr;22(4):1247–1257. doi: 10.1002/bip.360220416. [DOI] [PubMed] [Google Scholar]
- Marky L. A., Breslauer K. J. Calculating thermodynamic data for transitions of any molecularity from equilibrium melting curves. Biopolymers. 1987 Sep;26(9):1601–1620. doi: 10.1002/bip.360260911. [DOI] [PubMed] [Google Scholar]
- Moe J. G., Russu I. M. Proton exchange and base-pair opening kinetics in 5'-d(CGCGAATTCGCG)-3' and related dodecamers. Nucleic Acids Res. 1990 Feb 25;18(4):821–827. doi: 10.1093/nar/18.4.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nerdal W., Hare D. R., Reid B. R. Solution structure of the EcoRI DNA sequence: refinement of NMR-derived distance geometry structures by NOESY spectrum back-calculations. Biochemistry. 1989 Dec 26;28(26):10008–10021. doi: 10.1021/bi00452a020. [DOI] [PubMed] [Google Scholar]
- Nichols R., Andrews P. C., Zhang P., Bergstrom D. E. A universal nucleoside for use at ambiguous sites in DNA primers. Nature. 1994 Jun 9;369(6480):492–493. doi: 10.1038/369492a0. [DOI] [PubMed] [Google Scholar]
- Patel D. J., Kozlowski S. A., Marky L. A., Broka C., Rice J. A., Itakura K., Breslauer K. J. Premelting and melting transitions in the d(CGCGAATTCGCG) self-complementary duplex in solution. Biochemistry. 1982 Feb 2;21(3):428–436. doi: 10.1021/bi00532a002. [DOI] [PubMed] [Google Scholar]
- Patel D. J., Kozlowski S. A., Marky L. A., Rice J. A., Broka C., Itakura K., Breslauer K. J. Extra adenosine stacks into the self-complementary d(CGCAGAATTCGCG) duplex in solution. Biochemistry. 1982 Feb 2;21(3):445–451. doi: 10.1021/bi00532a004. [DOI] [PubMed] [Google Scholar]
- Sarai A., Mazur J., Nussinov R., Jernigan R. L. Origin of DNA helical structure and its sequence dependence. Biochemistry. 1988 Nov 1;27(22):8498–8502. doi: 10.1021/bi00422a030. [DOI] [PubMed] [Google Scholar]
- Shimoni L., Glusker J. P. Hydrogen bonding motifs of protein side chains: descriptions of binding of arginine and amide groups. Protein Sci. 1995 Jan;4(1):65–74. doi: 10.1002/pro.5560040109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Aerschot A., Rozenski J., Loakes D., Pillet N., Schepers G., Herdewijn P. An acyclic 5-nitroindazole nucleoside analogue as ambiguous nucleoside. Nucleic Acids Res. 1995 Nov 11;23(21):4363–4370. doi: 10.1093/nar/23.21.4363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wing R., Drew H., Takano T., Broka C., Tanaka S., Itakura K., Dickerson R. E. Crystal structure analysis of a complete turn of B-DNA. Nature. 1980 Oct 23;287(5784):755–758. doi: 10.1038/287755a0. [DOI] [PubMed] [Google Scholar]