Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 May 1;26(9):2082–2085. doi: 10.1093/nar/26.9.2082

Improving stable transfection efficiency: antioxidants dramatically improve the outgrowth of clones under dominant marker selection.

M Brielmeier 1, J M Béchet 1, M H Falk 1, M Pawlita 1, A Polack 1, G W Bornkamm 1
PMCID: PMC147536  PMID: 9547263

Abstract

Many cell lines are sensitive to growth at low cell density and undergo apoptosis induced by oxidative stress if the cell density is decreased below a critical threshold. In stable transfection experiments this cell density-dependent growth may be the limiting factor, since during drug selection the cell density falls below the critical threshold, precluding outgrowth of transfected clones. We describe here a simple protocol for the establishment of stably transfected human B cell lines making use of the protective action of antioxidants. The protocol includes: (i) seeding the cells in medium supplemented with sodium pyruvate, alpha-thioglycerol and bathocuproine disulfonate; (ii) delaying the onset of dominant marker selection to improve recovery of the cells after electroporation. Stably transfected clones have thus been obtained from Burkitt's lymphoma lines, which have been regarded as untransfectable. Using this protocol the stable transfection efficiency with episomal plasmids approaches the transient transfection efficiency, indicating that virtually every transfected cell can be established as a stably transfected clone. This protocol should also prove useful for other cell lines, e.g. neuronal cells, having similar sensitivities to oxidative stress.

Full Text

The Full Text of this article is available as a PDF (225.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrae U., Singh J., Ziegler-Skylakakis K. Pyruvate and related alpha-ketoacids protect mammalian cells in culture against hydrogen peroxide-induced cytotoxicity. Toxicol Lett. 1985 Nov;28(2-3):93–98. doi: 10.1016/0378-4274(85)90015-3. [DOI] [PubMed] [Google Scholar]
  2. Baum C., Forster P., Hegewisch-Becker S., Harbers K. An optimized electroporation protocol applicable to a wide range of cell lines. Biotechniques. 1994 Dec;17(6):1058–1062. [PubMed] [Google Scholar]
  3. Chu G., Hayakawa H., Berg P. Electroporation for the efficient transfection of mammalian cells with DNA. Nucleic Acids Res. 1987 Feb 11;15(3):1311–1326. doi: 10.1093/nar/15.3.1311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Coyle J. T., Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science. 1993 Oct 29;262(5134):689–695. doi: 10.1126/science.7901908. [DOI] [PubMed] [Google Scholar]
  5. Falk M. H., Hültner L., Milner A., Gregory C. D., Bornkamm G. W. Irradiated fibroblasts protect Burkitt lymphoma cells from apoptosis by a mechanism independent of bcl-2. Int J Cancer. 1993 Sep 30;55(3):485–491. doi: 10.1002/ijc.2910550327. [DOI] [PubMed] [Google Scholar]
  6. Falk M. H., Meier T., Issels R. D., Brielmeier M., Scheffer B., Bornkamm G. W. Apoptosis in Burkitt lymphoma cells is prevented by promotion of cysteine uptake. Int J Cancer. 1998 Feb 9;75(4):620–625. doi: 10.1002/(sici)1097-0215(19980209)75:4<620::aid-ijc21>3.0.co;2-b. [DOI] [PubMed] [Google Scholar]
  7. Giordano T. J., McAllister W. T. Optimization of the hygromycin B resistance-conferring gene as a dominant selectable marker in mammalian cells. Gene. 1990 Apr 16;88(2):285–288. doi: 10.1016/0378-1119(90)90045-s. [DOI] [PubMed] [Google Scholar]
  8. Gregory C. D., Dive C., Henderson S., Smith C. A., Williams G. T., Gordon J., Rickinson A. B. Activation of Epstein-Barr virus latent genes protects human B cells from death by apoptosis. Nature. 1991 Feb 14;349(6310):612–614. doi: 10.1038/349612a0. [DOI] [PubMed] [Google Scholar]
  9. Hörtnagel K., Mautner J., Strobl L. J., Wolf D. A., Christoph B., Geltinger C., Polack A. The role of immunoglobulin kappa elements in c-myc activation. Oncogene. 1995 Apr 6;10(7):1393–1401. [PubMed] [Google Scholar]
  10. Jochner N., Eick D., Zimber-Strobl U., Pawlita M., Bornkamm G. W., Kempkes B. Epstein-Barr virus nuclear antigen 2 is a transcriptional suppressor of the immunoglobulin mu gene: implications for the expression of the translocated c-myc gene in Burkitt's lymphoma cells. EMBO J. 1996 Jan 15;15(2):375–382. [PMC free article] [PubMed] [Google Scholar]
  11. Kempkes B., Zimber-Strobl U., Eissner G., Pawlita M., Falk M., Hammerschmidt W., Bornkamm G. W. Epstein-Barr virus nuclear antigen 2 (EBNA2)-oestrogen receptor fusion proteins complement the EBNA2-deficient Epstein-Barr virus strain P3HR1 in transformation of primary B cells but suppress growth of human B cell lymphoma lines. J Gen Virol. 1996 Feb;77(Pt 2):227–237. doi: 10.1099/0022-1317-77-2-227. [DOI] [PubMed] [Google Scholar]
  12. Knutson J. C., Yee D. Electroporation: parameters affecting transfer of DNA into mammalian cells. Anal Biochem. 1987 Jul;164(1):44–52. doi: 10.1016/0003-2697(87)90365-4. [DOI] [PubMed] [Google Scholar]
  13. Mayer M., Noble M. N-acetyl-L-cysteine is a pluripotent protector against cell death and enhancer of trophic factor-mediated cell survival in vitro. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7496–7500. doi: 10.1073/pnas.91.16.7496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
  15. Murphy T. H., Miyamoto M., Sastre A., Schnaar R. L., Coyle J. T. Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron. 1989 Jun;2(6):1547–1558. doi: 10.1016/0896-6273(89)90043-3. [DOI] [PubMed] [Google Scholar]
  16. Mũcke S., Polack A., Pawlita M., Zehnpfennig D., Massoudi N., Bohlen H., Doerfler W., Bornkamm G., Diehl V., Wolf J. Suitability of Epstein-Barr virus-based episomal vectors for expression of cytokine genes in human lymphoma cells. Gene Ther. 1997 Feb;4(2):82–92. doi: 10.1038/sj.gt.3300363. [DOI] [PubMed] [Google Scholar]
  17. O'Donnell-Tormey J., Nathan C. F., Lanks K., DeBoer C. J., de la Harpe J. Secretion of pyruvate. An antioxidant defense of mammalian cells. J Exp Med. 1987 Feb 1;165(2):500–514. doi: 10.1084/jem.165.2.500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Potter H., Weir L., Leder P. Enhancer-dependent expression of human kappa immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7161–7165. doi: 10.1073/pnas.81.22.7161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Steimle V., Otten L. A., Zufferey M., Mach B. Complementation cloning of an MHC class II transactivator mutated in hereditary MHC class II deficiency (or bare lymphocyte syndrome). Cell. 1993 Oct 8;75(1):135–146. [PubMed] [Google Scholar]
  20. Toneguzzo F., Hayday A. C., Keating A. Electric field-mediated DNA transfer: transient and stable gene expression in human and mouse lymphoid cells. Mol Cell Biol. 1986 Feb;6(2):703–706. doi: 10.1128/mcb.6.2.703. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES