Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 May 1;26(9):2247–2249. doi: 10.1093/nar/26.9.2247

Gel electrophoretic detection of 7,8-dihydro-8-oxoguanine and 7, 8-dihydro-8-oxoadenine via oxidation by Ir (IV).

J G Muller 1, V Duarte 1, R P Hickerson 1, C J Burrows 1
PMCID: PMC147540  PMID: 9547288

Abstract

Two gel electrophoretic methods are described for detection of 7, 8-dihydro-8-oxoguanine and 7,8-dihydro-8-oxoadenine based on their further oxidation with one-electron oxidants including IrCl62-and IrBr62-. The products of nucleobase oxidation lead to enhanced piperidine-sensitive cleavage and to highly visible stop points in a primer extension assay. 8-oxoG and 8-oxoA lesions may be distinguished by the latter's inability to be oxidized by IrBr62-compared to IrCl62-Comparison is also made to oxidation by MnO4-.

Full Text

The Full Text of this article is available as a PDF (122.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Breen A. P., Murphy J. A. Reactions of oxyl radicals with DNA. Free Radic Biol Med. 1995 Jun;18(6):1033–1077. doi: 10.1016/0891-5849(94)00209-3. [DOI] [PubMed] [Google Scholar]
  2. Chung M. H., Kiyosawa H., Ohtsuka E., Nishimura S., Kasai H. DNA strand cleavage at 8-hydroxyguanine residues by hot piperidine treatment. Biochem Biophys Res Commun. 1992 Oct 15;188(1):1–7. doi: 10.1016/0006-291x(92)92341-t. [DOI] [PubMed] [Google Scholar]
  3. Floyd R. A., Watson J. J., Wong P. K., Altmiller D. H., Rickard R. C. Hydroxyl free radical adduct of deoxyguanosine: sensitive detection and mechanisms of formation. Free Radic Res Commun. 1986;1(3):163–172. doi: 10.3109/10715768609083148. [DOI] [PubMed] [Google Scholar]
  4. Fujimoto J., Tran L., Sowers L. C. Synthesis and cleavage of oligodeoxynucleotides containing a 5-hydroxyuracil residue at a defined site. Chem Res Toxicol. 1997 Nov;10(11):1254–1258. doi: 10.1021/tx970102b. [DOI] [PubMed] [Google Scholar]
  5. Lowe L. G., Guengerich F. P. Steady-state and pre-steady-state kinetic analysis of dNTP insertion opposite 8-oxo-7,8-dihydroguanine by Escherichia coli polymerases I exo- and II exo-. Biochemistry. 1996 Jul 30;35(30):9840–9849. doi: 10.1021/bi960485x. [DOI] [PubMed] [Google Scholar]
  6. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  7. Shibutani S., Takeshita M., Grollman A. P. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature. 1991 Jan 31;349(6308):431–434. doi: 10.1038/349431a0. [DOI] [PubMed] [Google Scholar]
  8. Tchou J., Grollman A. P. The catalytic mechanism of Fpg protein. Evidence for a Schiff base intermediate and amino terminus localization of the catalytic site. J Biol Chem. 1995 May 12;270(19):11671–11677. doi: 10.1074/jbc.270.19.11671. [DOI] [PubMed] [Google Scholar]
  9. Torres M. C., Rieger R. A., Iden C. R. Characterization of the alkaline degradation products of an oligodeoxynucleotide containing 8-oxo-7,8-dihydro-2'-deoxyguanosine by electrospray ionization mass spectrometry. Chem Res Toxicol. 1996 Dec;9(8):1313–1318. doi: 10.1021/tx960107t. [DOI] [PubMed] [Google Scholar]
  10. Yanagawa H., Ogawa Y., Ueno M. Redox ribonucleosides. Isolation and characterization of 5-hydroxyuridine, 8-hydroxyguanosine, and 8-hydroxyadenosine from Torula yeast RNA. J Biol Chem. 1992 Jul 5;267(19):13320–13326. [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES